Коэффициенты объемного расширения и сжимаемости сжиженных углеводородов. пропан. пропилен. н-бутан. н-бутилен. керосин. вода (для сравнения)

Оглавление

Температура замерзания воды

Процесс замерзания происходит при охлаждении её до ноля градусов по шкале Цельсия. Это касается не всей воды. Молекулы присоединяются к примесям, которыми являются частички пыли, соли и т.д. Поэтому чистая либо же дистиллированная вода, без присутствия этих самых примесей под воздействием низких температур по столбику Цельсия, дольше, чем обычная может оставаться в жидком состоянии.

Так же интересно, что при том, как другие вещества при замерзании уменьшаются в объеме, вода наоборот увеличивается. Все потому, что при переходе в твёрдое состояние, расстояние между молекулами расширяется. При том,что объём увеличивается, масса при замерзании не увеличивается, и весит столько же, сколько тёплая вода.

Многие задаются вопросом, почему вода не замерзает под толстым слоем льда. Любой физик ответит, что под слоем льда, вода не замерзает,так как поверхность льда служит теплоизолятором.

Отчего горячая вода замерзает быстрее холодной

Известен такой факт, что горячая или тёплая вода замерзает быстрее холодной воды. Невероятно, но факт. Это открытие сделал Эрасто Мпемба. Он проводил эксперименты с использованием мороженой массы,причём обнаружил, что если масса тёплая, то она быстрее замёрзнет. Причиной этого, как показали исследования, является высокая теплоотдача горячей и тёплой воды.

Взаимосвязаны ли температура замерзания воды и высота

Как известно, на высоте происходит изменение давления,поэтому температура перехода в твёрдое состояние всех водных растворов на высоте отличается от температуры на обычной поверхности.

Примеры изменения температурных показателей на высоте:

  • высота 500 м – температура замерзания воды, является не ноль °C, как при обычных условиях, а при наличии уже одного °C;
  • высота 1500 м – кристаллизация происходит при наличии около трёх° C и т.д.

Как давление влияет на процесс кристаллизации воды

Если разобраться о взаимосвязи давления и кристаллизации воды, то всё довольно просто.

Интересно! Чем выше давление, тем скорость преобразования воды в кристаллы льда ниже, а температура кипения выше!

Вот и весь секрет, а если логически подумать, то при понижении давления, все показатели идут в обратные стороны. Поэтому в горах сложно что — то сварить, так как температура, при которой кипит вода, не доходит до ста градусов Цельсия. И наоборот лёд плавится даже при низких температурах.

https://youtube.com/watch?v=p0QcgfLqlBA

Температура кристаллизации водных растворов

Вода служит хорошим растворителем и поэтому легко соединяется с другими веществами. Полученные растворы, конечно же, будут замерзать при разных условиях. Рассмотрим пару вариантов температурных критериев для замерзания разных растворов на основе воды.

Вода и спирт. При большом количестве спирта в воде,процесс замерзания начнётся при наличии очень низких температур. К примеру, при соотношении 60% воды на 40% спирта, кристаллизация начнётся при наличии минус 22,5°C.

Вода и соль. Температура, при которой произойдёт замерзание напрямую связано со степенью солёности воды. Принцип таков, чем больше соли в воде, тем ниже температура кристаллизации. С показателями содержания соли напрямую связано как замерзает морская вода.

Вода и сода. Температура кристаллизации раствора 44 процентов, составляет плюс 7°C.

Вода и глицерин, при соотношении 80% на 20%, где 80 – это глицерин, а 20 – это вода, для замерзания раствора нужно наличие — 20°C.

Все температурные значения колеблются в зависимости от степени концентрации чужеродных растворов или иного вещества в воде.

Миф второй. Главная задача — не замерзать при минусовых температурах

Если буквально перевести слово «антифриз», то получится «против замерзания» (от греч. «против» и англ. «замерзать»). Исходя из этого можно решить, будто главная и единственная задача охлаждающей жидкости — не замерзать при температурах ниже нуля. Отчасти это так, но есть нюансы.

— На самом деле важнейшая роль охлаждающей жидкости — регулировать температуру в системе и не допускать перегрева двигателя, — говорят специалисты. — Около трети энергии, полученной в результате сгорания топлива, рассеивается через радиатор.

Конечно, охлаждающая жидкость не должна замерзать, но это третья по приоритету задача — после регулирования температуры в двигателе и предотвращения коррозии в системе охлаждения.

Состояния и виды воды

Вода на планете Земля может принимать три основных агрегатных состояния: жидкое, твёрдое и газообразное, которые способны трансформироваться в разные формы, одновременно сосуществующие друг с другом (айсберги в морской воде, водяной пар и кристаллы льда в облаках на небе, ледники и свободно текущие реки).

В зависимости от особенностей происхождения, назначения и состава вода может быть:

  • пресной;
  • минеральной;
  • морской;
  • питьевой (сюда же отнесём водопроводную воду);
  • дождевой;
  • талой;
  • солоноватой;
  • структурированной;
  • дистиллированной;
  • деионизированной.

Наличие изотопов водорода делает воду:

  1. лёгкой;
  2. тяжёлой (дейтериевой);
  3. сверхтяжёлой (тритиевой).

Все мы знаем о том, что вода бывает мягкой и жёсткой: этот показатель определяется содержанием катионов магния и кальция.

Каждый из перечисленных нами видов и агрегатных состояний воды имеет свою температуру замерзания и плавления.

Что делать, когда замерз водопровод: 3 способа разморозить пластиковые трубы не копая

Водопровод нужно прокладывать с умом и делать так, чтобы он бесперебойно функционировал круглый год. Но если при монтаже были допущены ошибки, исправлять их придётся в самый неподходящий момент. Одно из худших последствий плохого водопровода – это замерзание воды. Рассмотрим 3 проверенных способа разморозки пластиковых труб.

Зима, как всегда, приходит неожиданно! Представим ситуацию – вы просыпаетесь утром, за окном трескучий мороз, а из крана не течёт вода. Внутренний голос подсказывает, что замёрзла труба. Что делать?

Зачастую водопровод замерзает под землёй, а также в местах соприкосновения с фундаментом и железобетонными конструкциями. Прогреть трубу снаружи в таких местах не представляется возможным. Здесь приходится действовать дистанционно, внутри тонкого водовода.

Принцип разморозки водопровода – это подача теплоносителя к ледяной пробке. Сделать это весьма проблематично. Недостаточно залить внутрь кипяток из чайника – это ничего не даст. Теплоноситель нужно подавать постоянно, до полного оттаивания ледяной пробки.

С чего начинать?

Тем, кто пользуется колодцем, в первую очередь нужно убедиться, что ледяная пробка находится в трубе, а не в насосе или в уличном водопроводном кране.

Это делается просто: электронасос отсоединяется от водопровода и включается – пошла вода, значит, лёд в трубе. Бывает, что замерзает кран в колодце. Отогрейте его феном. Если нет результата, то дело в трубе и нужно выбрать удобный способ устранения проблемы и приступать к работам.

Будет полезно: Дизайн детской комнаты для девочки и мальчика: фото интерьера, мебель для маленькой комнаты

Характеристики вещества

Пропиленгликоль – это двухатомный спирт, в обычном состоянии представлен бесцветной вязкой жидкостью. Она имеет слабый запах и сладковатый привкус.

Пропиленгликоль, в отличие от ближайшего аналога, этиленгликоля, считается нетоксичным веществом, его широко используют в парфюмерной и даже в пищевой промышленности — в этом случае оно обозначается как Е-1520.

Химическая формула пропиленгликоля — С3Н6(ОН)2. Вещество по своей структуре крайне текучее и способно медленно просачиваться сквозь микроотверстия и трещины. Температура воспламенения — достаточно высокая, она составляет +421°С.

Что нужно знать при проведении расчетов

При установке отопительной системы, не всегда получается сэкономить полезную площадь, что так важно в малогабаритных помещениях. Но при этом можно узнать точный объем нужного устройства

При вычислениях  используется такая формула:

При вычислениях  используется такая формула:

Vb (объем бачка) = Vt(объем жидкости теплоносителя)*Kt ( коэффициент, учитывающий расширение под влиянием тепла)/F(коэффициент производительности мембранного бака)

Чтобы определить объем теплоносителя используются такие методы:

  • засекается время пробного наполнения всей конструкции. Это можно сделать с помощью водомера;
  • складываются все объемы присутствующих механизмов – труб, батарей и источников тепла;
  • применяется соответствие 15 литров жидкости теплоносителя на каждый киловатт мощности оборудования.

Расчет объема на отдельном примере

Коэффициент, учитывающий тепловое расширение используемого теплоносителя, зависит от наличия антифризных добавок. Он меняется в зависимости от процентного соотношения данных добавок, а также может меняться под влиянием температуры. Есть специальные таблицы, где можно посмотреть данные из расчета нагревания теплоносителя. Такая информация внесена в калькулятор. Если используется вода, то это обязательно отображается в программе.

Незамерзающие жидкости в качестве теплоносителя особенно актуальны при необходимости отключать отопление в холодное время года.

Обязательно учитывается коэффициент эффективности мембранного расширительного бака. Его можно определить по такой формуле:

F= (Pm-Pb)/(P1+1)

При этом Pm обозначает максимальное давление, которое может привести к аварийному включению специального клапана безопасности. Это значение должно указываться в паспортных данных изделия.

На схеме показан вариант монтажа устройства

Pb – это давление для подкачки воздушной камеры устройства. Если конструкция уже была подкачана, то параметр указывается в технических характеристиках. Это величину можно менять самостоятельно. Например, производить докачку насосом для автомобиля или убирать лишний воздух при помощи вмонтированного ниппеля. Для автономных систем рекомендуемый показатель – 1-1,5 атмосфер.

Статья по теме:

Теплоноситель – основные требования в системе отопления

Какой же должен быть теплоноситель для системы автономного отопления? Попробуем сформулировать необходимые критерии соответствия «идеального» варианта.

  • Начнем с того, что жидкость на отопление нам понадобится с максимально высокой теплоемкостью. Это условие необходимо для качественного аккумулирования и дальнейшей отдачи тепловой энергии посредством радиаторов.
  • Нам понадобится теплоноситель, с химическим составом не активизирующим коррозионные процессы в котельном оборудовании, в разводке труб, отопительно-радиаторных, запорно-регулирующих и прочих конструкциях отопительной системы.
  • Особые требования следует выдвигать к химической составляющей теплоносителя. Состав проходит через уплотнения насосного оборудования, и другие конструктивные элементы содержащие резиновые уплотнительные кольца и может подвергать их к разрушению.
  • Одним из главных показателей, указывающих, что у вас в распоряжении качественный теплоноситель — широкий диапазон температурного использования. Производитель заботящийся о своей репутации предлагает теплоноситель с рабочими характеристиками, начиная от низких температурных значений кристаллизации до высоких пороговых значений закипания.
  • Теплоноситель не должен содержать соль, которая так “любит” выпадать в виде накипи в теплообменнике, выводя его из строя, а также разрастаться твердыми отложениями во внутреннем сечении труб.
  • Необходимо, чтобы теплоноситель для отопления обладал повышенной стабильностью. Нам потребуется теплоноситель, который не распадается со временем на составные части ни под воздействием высоких температур, ни под воздействием своего химического состава. На протяжении всего срока службы, теплоноситель обязан сохранять заявленные технические характеристики, такие как: плотность, текучесть, теплоемкость, химическая инертность.
  • Кроме того, теплоноситель не должен угрожать здоровью жильцов в случае протечек. Не допускаются токсичные испарения. Жидкость применяемая в отоплении должна быть полностью негорючая и не образовывать взрывоопасных газовых смесей при испарении.
  • Как правило, система отопления имеет значительные объемы, таким образом одним из немаловажных критериев для рачительного домовладельца становится приемлемая стоимость теплоносителя.

Как ускорить?

Чтобы в емкости быстрее образовался кипяток, можно использовать следующие способы:

  1. Накрыть кастрюлю крышкой. Самый действенный вариант. Крышка не позволит теплу уходить в помещение. Теплоотдача останется высокой. Воде потребуется меньше времени для закипания.
  2. Использовать кастрюлю с широким днищем. Чем больше диаметр емкости, тем скорее в ней начнется процесс кипения. В таре с широким дном нагрев более равномерный.
  3. Использовать самую большую по размеру газовую или электрическую конфорку. Чем больше по диаметру нагревательный источник, тем интенсивнее будет прогреваться дно емкости.

Соль не ускоряет закипание воды. Она лишь вызывает кратковременный эффект появления пузырьков в ней. Особенно это видно при добавлении соли в уже сильно нагретую воду. Но на время ее закипания это не влияет.

Сравнение теплоносителей: вода, глицерин, этиленгликоль и пропиленгликоль

В США и Европе с 1996 года начался массовый переход на использование только пропиленгликолевых теплоносителей. В России только сейчас становится заметна эта тенденция — скорее всего, это связано с высокими затратами на внедрение таких систем.

  • экологичное вещество;
  • достаточно высокий показатель теплоемкости;
  • свободно циркулирует по системе;
  • всегда под рукой;
  • крайне низкая стоимость.
  • замерзает при температуре ниже 0 °С;
  • отсутствие эксплуатации в зимний период требует слива системы, что приводит к коррозии;
  • жесткость воды проявляется при температуре свыше 80°С, тогда начинается разложение карбонатных солей и отложение накипи на стенках системы, что снижает теплоотдачу и может сломать систему из-за перегрева.

Теплофизические свойства воды на линии насыщения (100…370°С)

В таблице представлены теплофизические свойства воды H2O на линии насыщения в зависимости от температуры (в диапазоне от 100 до 370°С). Каждому значению температуры, при которой вода находится в состоянии насыщения, соответствует давление ее насыщенного пара. При этих параметрах жидкость и ее пар находятся в состоянии насыщения или термодинамического равновесия.

В таблице даны следующие теплофизические свойства воды в состоянии насыщенной жидкости:

  • давление насыщенного пара при указанной температуре p, Па;
  • плотность воды ρ, кг/м3;
  • удельная энтальпия воды h, кДж/кг;
  • удельная (массовая) теплоемкость Cp, кДж/(кг·град);
  • теплопроводность λ, Вт/(м·град);
  • температуропроводность a, м2/с;
  • вязкость динамическая μ, Па·с;
  • вязкость кинематическая ν, м2/с;
  • коэффициент теплового объемного расширения β, К-1;
  • коэффициент поверхностного натяжения σ, Н/м;
  • число Прандтля Pr.

Свойства воды на линии насыщения имеют зависимость от температуры. Ее влияние особенно сказывается на вязкости воды — динамическая вязкость H2O при повышении температуры значительно снижается. Если, при температуре 100°С значение этого свойства воды в состоянии насыщения равно 282,5·10-6 Па·с, то при температуре, равной, например 370°С, динамическая вязкость снижается до величины 56,9·10-6 Па·с.

Другие свойства воды такие, как плотность, теплопроводность, удельная теплоемкость, температуропроводность при росте ее температуры имеют тенденцию к снижению своих значений. Например, плотность воды уменьшается с 958,4 до 450,5 кг/м3 при нагревании со 100 до 370°С.

Теплопроводность воды в состоянии насыщения при увеличении температуры также снижается (в отличие от нормальных условий и температуре до 100°С, при которых имеет место ее рост в процессе нагрева). Снижение теплопроводности связано с увеличением как температуры, так и давления насыщенной жидкости.

Следует отметить, что удельная энтальпия воды в зависимости от температуры значительно увеличивается при нагревании, как до температуры кипения, так и выше.

Преимущества и недостатки пропиленгликоля как теплоносителя

Наглядно выявить преимущества и недостатки пропиленгликоля можно, если сравнить его с водой (которая тоже является жидкостью-теплоносителем в некоторых отопительных системах):

  • плотность двухатомного спирта 1037 кг/м³, а это больше чем у воды (1000 кг/м³): разница на 3,7%;
  • вещество начинает кипеть при +187 °С, а вода при +100 °С, разница — 87%;
  • спирт замерзает при -60 °С, вода уже при 0 °С;
  • удельная теплоёмкость равна 2483 Дж/(кг·К), почти в 2 раза ниже, чем у воды (4,187 Дж/(кг·К));
  • теплопроводность – 0,218 Вт/(м·К), что в три раза ниже, чем у воды 0,6 Вт/(м·К);
  • динамическая вязкость спирта – 56 мПа·с, в восемьсот раз больше, чем у воды (0,894 мПа·с).

Из этого перечня можно сделать несколько выводов.

  • Плотность пропиленгликоля выше, чем у воды, поэтому статическая нагрузка и давление в отопительной системе также возрастут.
  • Высокий показатель температуры кипения в +187 °C – не такое уж и преимущество. Удельная теплоёмкость пропиленгликоля в два раза ниже, чем у воды. Значит, довести до кипения эти две жидкости можно одинаковым количеством тепла. Их температура достигнет своей крайней точки практически одновременно, только вода будет бурлить при +100 °C, а спирт – при +187 °C.
  • Температура замерзания пропиленгликоля заметно ниже. Помимо этого он практически не расширяется при охлаждении, и этим не выводит из строя систему отопления.
  • Низкий показатель удельной теплоёмкости — явное преимущество, отсюда быстрый прогрев системы отопления, однако, пропиленгликоль способен накопить мало тепла – а это уже недостаток.
  • Высокая динамическая вязкость добавит нагрузку на циркуляционный насос, который перемещает теплоноситель по трубам и радиаторам.

Впрочем, в некоторых ситуациях пропиленгликоль лучше справится со своими задачами, чем вода:

  • если не пользоваться водной системой отопления зимой и не сливать воду, система может выйти из строя (при этом даже после полного слива вода все равно останется в трубах, вызывая коррозию) — а пропиленгликоль можно использовать круглый год и не сливать в зимний период;
  • антифриз, который изготовлен на основе из пропиленгликоля, не вызывает коррозию и не образует накипь.

Недостатки у таких антифризов тоже есть:

  • стоимость выше, чем у воды;
  • необходима полная замена жидкости раз в пять лет;
  • в системе отопления не должно быть деталей, которые содержат цинк — пропиленгликоль быстро их растворяет;
  • пропиленгликоль крайне текучий, он может проникнуть через мелкие соединения в системе отопления.

Полезно ли ее пить и как правильно делать талую воду, положительные свойства после заморозки для организма

О пользе людям стало известно давно. Сельские жители заметили, что животные охотнее пьют весеннюю размороженную жидкость, чем только что набранную из колодца. Считается, что водная диета помогает:

  • справиться с авитаминозом;
  • зарядиться энергией на целый день;
  • замедлить процессы старения;
  • укрепить иммунитет;
  • устранить простудные заболевания;
  • уменьшить уровень вредного холестерина;
  • сделать крепче память;
  • победить ряд аллергических реакций и кожных высыпаний;
  • ускорить метаболизм и настроить правильную работу ЖКТ;
  • лечить атеросклероз;
  • заживлять раны и порезы;
  • повысить стрессоустойчивость и улучшить общее психическое здоровье.

На вопрос полезно ли пить замороженную воду, ответим – да, очень. Особенно это касается людей в возрасте и тех, кто хочет предупредить старение. Дело в том, что с наступлением 50-60 лет сильно замедляются обменные процессы, что приводит к общему обезвоживанию организма и к систематической нехватке кислорода. Решить эту проблему и насытить все ткани влагой можно, если перед питьем ее замораживать и размораживать.

Также о пользе говорят косметологи и диетологи, врачи и специалисты многих направлений. Прогрессивные педиатры, которые поддерживают идею закаливания в профилактических целях, также рекомендуют ежедневное употребление небольшого количества ледяной жидкости.

Подбор устройства согласно расчету

Перед тем как приступить к расчету мембранника, нужно знать, что чем больше объем отопительной системы и выше максимальный температурный показатель теплоносителя, тем большего объема должен быть сам бак.

Существует несколько способов, по которым проводят расчет: обращение к специалистам в бюро по проектированию, проведение расчетов самостоятельно по специальной формуле или расчет при помощи онлайн калькулятора.

Формула

Расчетная формула выглядит так: V = (VL x E) / D, где:

  • VL – объем всех магистральных деталей, включая котел и остальные нагревательные приборы;
  • Е – коэффициент расширения теплоносителя (в процентах);
  • D – показатель эффективности мембранника.

Определение объема

Самый простой способ определения среднего объема отопительной системы – по мощности обогревательного котла из расчета 15 л/кВт. То есть, при мощности котла 44 кВт объем всех магистралей системы будет равен 660 л (15х44).

Если в трубы залит антифриз, то прибегают к такому расчету:

https://youtube.com/watch?v=tgwLKEVRgYk

Показатель эффективности (D) основан на начальном и наибольшем давлении в системе, а также стартовом давлении воздуха в камере. Предохранительный клапан всегда настраивается на максимальное давление. Чтобы найти значение показателя эффективности, нужно провести следующий расчет: D = (PV — PS)/(PV+1), где:

  • PV – максимальная отметка давления в системе, для индивидуального отопления показатель равен 2,5 бар;
  • PS – давление зарядки мембранника обычно составляет 0,5 бар.

Теперь осталось собрать все показатели в формулу и получить окончательный расчет:

  • VL = 15х44=660 л;
  • D = (2,5 – 0,5) / (2,5+1) = 0,58;
  • E = 4% = 0,04;
  • V = (660×0,04) / 0,58 = 45,5 л.

Полученное число можно округлить и остановить свой выбор на модели расширительного бака начиная от 46 литров. Если в качестве теплоносителя будет использована вода, то объем бака будет составлять не менее 15% от вместимости всей системы. Для антифриза этот показатель равен 20%. Стоит отметить, что объем прибора может быть несколько больше расчетного числа, но ни в коем случае, не меньше.

Для балансировки автономной системы отопления используется расширительный бак.

Его задача- выравнивать объем теплоносителя, нагретого до высоких температур, и поддерживать заданное давление.

Надежность выполнения возложенных на этот элемент функций зависит от того, насколько правильно подобран его объем.

Этот параметр не является константой и зависит от конкретных условий. Ниже рассмотрим, как производится расчет расширительного бака для закрытой системы отопления.

Этиленгликоль

В некоторых условиях существует необходимость использовать теплоноситель с довольно низким порогом замерзания. Такие вещества называются антифризы. Антифриз на основе этиленгликоля составляет примерно 25% всех теплоносителей.

В состав антифриза на основе этиленгликоля вводят специальные добавки – ингибиторы, замедляющие скорость протекания нежелательных химических процессов под воздействием этиленгликоля.

Для использования этиленгликоля надо принимать в расчёт следующие факторы:

Положительные стороны:

Отрицательные стороны – токсичность! Вот что не даёт этиленгликолю постепенно вытеснить воду с лидирующей позиции. Этиленгликоль – смертельно опасен.

Как будет меняться температура кипения воды: 4 фактора

Температура, при которой кипит жидкость, называется температурой кипения.

Стоит отметить, что она всегда остается неизменной. Поэтому, если увеличить огонь под кипящей кастрюлей с водой, выкипать будет быстрее, но температура при этом не увеличится, так как средняя кинетическая энергия молекул остаётся неизменной.

Рассмотрим 4 фактора, которые влияют на изменение t°:

  1. Пониженное атмосферное давление (наблюдается в горной местности) – t° уменьшается.
  2. Повышенное атмосферное давление (наблюдается в шахте) – t° наоборот увеличивается.
  3. Применения герметической крышки, вакуума. За счёт герметической крышки или посуды пар не выходит градус кипения увеличивается. При использовании вакуума температура зависит от давления, которое создано внутри его.
  4. Свойства воды. Соленая вода начинает кипеть при более высокой температуре, чем пресная.

Рассмотрим более подробно каждый из факторов.

Влияние атмосферного давления

Согласно исследованиям и уравнению Клапейрона — Клаузиуса, градус кипения напрямую зависит от атмосферного давления. С его ростом температура кипения увеличивается, а с уменьшением, наоборот, становится все ниже и ниже.

Атмосферное давление — это давление атмосферы, действующее на все находящиеся на ней предметы и земную поверхность. Оно может меняться в зависимости от места и времени и измеряется барометром.

Таблица № 1. «Температура кипения воды от давления».

Р, кПа t, °C Р, кПа t, °C Р, кПа t, °C
5,0 32,88 91,5 97,17 101,325 100,00
10,0 45,82 92,0 97,32 101,5 100,05
15,0 53,98 92,5 97,47 102,0 100,19
20,0 60,07 93,0 97,62 102,5 100,32
25,0 64,98 93,5 97,76 103,0 100,46
30,0 69,11 94,0 97,91 103,5 100,60
35,0 72,70 94,5 98,06 104,0 100,73
40,0 75,88 95,0 98,21 104,5 100,87
45,0 78,74 95,5 98,35 105,0 101,00
50,0 81,34 96,0 98,50 105,5 101,14
55,0 83,73 96,5 98,64 106,0 101,27
60,0 85,95 97,0 98,78 106,5 101,40
65,0 88,02 97,5 98,93 107,0 101,54
70,0 89,96 98,0 99,07 107,5 101,67
75,0 91,78 98,5 99,21 108,0 101,80
80,0 93,51 99,0 99,35 108,5 101,93
85,0 95, 15 99,5 99,49 109,0 102,06
90,0 96,71 100,0 99,63 109,5 102,19
90,5 96,87 100,5 99,77 110,0 102,32
91,0 97, 02 101,0 99,91 115,0 103,59

Единицы измерения давления в таблице: кПа.

Нормальное атмосферное давление составляет 765 мм. РТ. Ст. = 101,325 Р, кПа

Температура кипения в горах

При подъеме над поверхностью Земли (в горах), температура кипения воды падает, так как снижается атмосферное давление (на каждые 10, 5 м на 1 мм РТ. С). Пузырькам легче всплывать –  процесс происходит быстрее.

Поэтому высоко в горах альпинисты не могут приготовить нормальную пищу, а используют законсервированные продукты.

Для варки мяса, как и других продуктов, нужны привычные 100  градусов. В обратном случае все компоненты бульона просто останутся сырыми.

Таблица № 2. «Как будет меняться t° кипения с высотой».

Высота над уровнем моря t° кипения
100,0
500 98,3
1000 96,7
1500 95,0
2000 93, 3
2500 91,7
3000 90,0
3500 88,3
4000 86,7
4500 85,0
5000 83,3
6000 80,0

Температура кипения воды в шахте

Если спуститься в шахту, то давление будет увеличиваться.

Температура кипения воды в шахте зависит от глубины (при спуске на 300 м вода закипит при t 101°C, при глубине 600 метров -102 °C

Применение герметической крышки

Герметичные крышки не позволяет образовавшемуся пару ускользнуть. В среднем температура закипания воды увеличивается от 5-20 градусов.

В хозяйстве для приготовления блюд часто используют кастрюли, сковородки с герметичной крышкой. Таким образом, уменьшается время приготовления пищи за счет высокой температуры, а блюда получаются более вкусными. В горных районах с низким давлением это необходимая вещь для приготовления пищи. Так же используют мультиварки и сотейники.

Кипячение воды в вакууме

Вакуум — это среда с газом, с пониженным давлением.

Виды вакуумов:

  1. низкий;
  2. средний;
  3. высокий;
  4. сверхвысокий;
  5. экстремальный;
  6. космическое пространство;
  7. абсолютный.

Температура кипения воды в вакууме зависит от того, какое давление в нём.

Кипение солёной воды

Солёная вода закипает при более высокой температуре за счет своих свойств.

Соль увеличивает плотность воды, соответственно на процесс требуется больше времени.

t° повышается примерно на 1 градус при добавлении 40 грамм соли на литр воды.

Температура кипения воды в чайнике

Чистая пресная вода закипает в чайнике при t° 100 градусов °C  при условиях нормального атм. давления 760 мм ртутного столба.