Как посчитать расход воды по диаметру трубы и давлению

Расчет пропускной способности канализационных труб

При проектировании канализационной системы нужно в обязательном порядке рассчитывать пропускную способность трубопровода, которая напрямую зависит от его вида (канализационные системы бывают напорными и безнапорными). Для осуществления расчетов используются гидравлические законы. Сами расчеты могут проводиться как при помощи формул, так и посредством соответствующих таблиц.

Для гидравлического расчета канализационной системы требуются следующие показатели:

  • Диаметр труб – Ду;
  • Средняя скорость движения веществ – v;
  • Величина гидравлического уклона – I;
  • Степень наполнения – h/Ду.

Скорость и предельный уровень наполнения бытовой канализации определяются по таблице, которую можно выписать так:

  1. 150-250 мм — h/Ду составляет 0,6, а скорость – 0,7 м/с.
  2. Диаметр 300-400 мм — h/Ду составляет 0,7, скорость – 0,8 м/с.
  3. Диаметр 450-500 мм — h/Ду составляет 0,75, скорость – 0,9 м/с.
  4. Диаметр 600-800 мм — h/Ду составляет 0,75, скорость – 1 м/с.
  5. Диаметр 900+ мм — h/Ду составляет 0,8, скорость – 1,15 м/с.

Для изделия с небольшим сечением имеются нормативные показатели минимальной величины уклона трубопровода:

  • При диаметре 150 мм уклон не должен быть менее 0,008 мм;
  • При диаметре 200 мм уклон не должен быть менее 0,007 мм.

Для расчета объема стоков используется следующая формула:

q = a*v,

Где а – площадь живого сечения потока;

v – скорость транспортировки стоков.

Определить скорость транспортировки вещества можно по такой формуле:

v= C√R*i,

где R – величина гидравлического радиуса,

С – коэффициент смачивания;

i – степень уклона конструкции.

Из предыдущей формулы можно вывести следующую, которая позволит определить значение гидравлического уклона:

i=v2/C2*R.

Чтобы вычислить коэффициент смачивания, используется формула такого вида:

С=(1/n)*R1/6,

Где n – коэффициент, учитывающий степень шероховатости, который варьируется в пределах от 0,012 до 0,015 (зависит от материала изготовления трубы).

Значение R обычно приравнивают к обычному радиусу, но это актуально лишь в том случае, если труба заполняется полностью.

Для других ситуаций используется простая формула:

R=A/P,

Где А – площадь сечения потока воды,

Р – длина внутренней части трубы, находящейся в непосредственном контакте с жидкостью.

Изменение температуры газа по длине газопровода

При стационарном движении газа массовый
расход в газопроводе составляет

. (2.41)

Фактически движение газа в газопроводе
всегда является неизотермическим. В
процессе компримирования газ нагревается.
Даже после его охлаждения на КС температура
поступающего в трубопровод газа
составляет порядка 2040С,
что существенно выше температуры
окружающей среды (T).
Практически температура газа становится
близкой к температуре окружающей среды
лишь у газопроводов малого диаметра
(Dу0.
Кроме того следует учесть, что
транспортируемый по трубопроводу газ
является реальным газом, которому присущ
эффект Джоуля-Томпсона, учитывающий
поглощение тепла при расширении газа.

При изменении температуры по длине
газопровода движение газа описывается
системой уравнений:

удельной энергии ,

неразрывности ,

состояния ,

теплового баланса .

Рассмотрим в первом приближении уравнение
теплового баланса
без учета эффекта
Джоуля-Томпсона. Интегрируя уравнение
теплового баланса

,

получим

, (2.42)

где ;

KСР– средний на участке полный
коэффициент теплопередачи от газа в
окружающую среду;

G– массовый расход газа;

cP
средняя изобарная теплоемкость газа.

Величина atLназывается безразмерным критерием
Шухова

(2.43)

Таким образом, температура газа в конце
газопровода составит

. (2.44)

На удалении xот начала
газопровода температура газа определяется
по формуле

. (2.45)

Изменение температуры по длине газопровода
имеет экспоненциальный характер (рис.
2.6).

Рассмотрим
влияние изменения температуры газа на
производительность газопровода.

Умножив обе части уравнения удельной
энергии на 2и выразив,
получим

. (2.46)

Выразим плотность газа в левой части
выражения (2.46) из уравнения состояния,
произведениеwиз уравнения неразрывности

С учетом этого уравнение удельной
энергии принимает вид

(2.47)

или

. (2.48)

Обозначиви интегрируя левую часть уравнения
(2.48) отPНдоPК, а правую отTНдоTК, получим

. (2.49)

Произведя замену

, (2.50)

имеем

. (2.51)

Произведя интегрирование в указанных
пределах, получим

. (2.52)

С учетом (2.42)

или

, (2.53)

где – поправочный коэффициент, учитывающий
изменение температуры по длине газопровода
(неизотермичность газового потока).

С учетом (2.53) зависимость для определения
массового расхода газа примет вид

. (2.54)

Значение Нвсегда больше единицы, следовательно,
массовый расход газа при изменении
температуры по длине газопровода
(неизотермическом режиме течения) всегда
меньше, чем при изотермическом режиме
(T=idem). Произведение TНназывается среднеинтегральной
температурой газа в газопроводе.

При значениях числа Шухова Шу4
течение газа в трубопроводе можно
считать практически изотермическим
при T=idem. Такой температурный
режим возможен при перекачке газа с
небольшими расходами по газопроводам
малого (менее 500 мм) диаметра на значительное
расстояние.

Влияние изменения температуры газа
проявляется при значениях числа Шухова
Шу

При
перекачке газа наличие дроссельного
эффекта приводит к более глубокому
охлаждению газа, чем только при теплообмене
с грунтом. В этом случае температура
газа может даже опуститься ниже
температурыT(рис.
2.7).

Рис. 2.7. Влияние эффекта Джоуля-Томпсона
на распределение температуры газа по
длине газопровода

1 – без учета Di; 2 – с
учетомDi

Тогда с учетом коэффициента Джоуля-Томпсона
закон изменения температуры по длине
принимает вид

, (2.55)

Пропускная способность канализационной трубы

Пропускная способность канализационной трубы – важный параметр, который зависит от типа трубопровода (напорный или безнапорный). Формула расчета основана на законах гидравлики. Помимо трудоемкого расчета, для определения пропускной способности канализации используют таблицы.

Формула гидравлического расчета

Для гидравлического расчета канализации требуется определить неизвестные:

  1. диаметр трубопровода Ду;
  2. среднюю скорость потока v;
  3. гидравлический уклон l;
  4. степень наполнения h/ Ду (в расчетах отталкиваются от гидравлического радиуса, который связан с этой величиной).
Таблица 3. Самоочищающая скорость канализационных стоков в зависимости от значения условного прохода трубы
Ду, мм h/Ду Самоочищающая скорость, м/с
150-250 0,6 0,7
300-400 0,7 0,8
450-500 0,75 0,9
600-800 0,75 0,1
900+ 0,8 1,15

Кроме того, существует нормированное значение минимального уклона для труб с малым диаметром: 150 мм

(i=0.008) и 200 (i=0.007) мм.

Формула объемного расхода жидкости выглядит так:

q=a•v,

где a — это площадь живого сечения потока,

v – скорость потока, м/с.

Скорость рассчитывается по формуле:

v= C√R*i,

где R – это гидравлический радиус;

С – коэффициент смачивания;

i — уклон.

Отсюда можно вывести формулу гидравлического уклона:

i=v2/C2*R

По ней определяют данный параметр при необходимости расчета.

С=(1/n)*R1/6,

где n – это коэффициент шероховатости, имеющий значения от 0,012 до 0,015 в зависимости от материала трубы.

Гидравлический радиус считают равным радиусу обычному, но только при полном заполнении трубы. В остальных случаях используют формулу:

R=A/P,

где А – это площадь поперечного потока жидкости,

P– смоченный периметр, или же поперечная длина внутренней поверхности трубы, которая касается жидкости.

Таблицы пропускной способности безнапорных труб канализации

В таблице учтены все параметры, используемые для выполнения гидравлического расчета. Данные выбирают по значению диаметра трубы и подставляют в формулу. Здесь уже рассчитан объемный расход жидкости q, проходящей через сечение трубы, который можно принять за пропускную способность магистрали.

Кроме того, существуют более подробные таблицы Лукиных, содержащие готовые значения пропускной способности для труб разного диаметра от 50 до 2000 мм.

Таблицы пропускной способности напорных канализационных систем

В таблицах пропускной способности напорных труб канализации значения зависят от максимальной степени наполнения и расчетной средней скорости сточной воды.

Таблица 4. Расчет расхода сточных вод, литров в секунду
Диаметр, мм Наполнение Принимаемый (оптимальный уклон) Скорость движения сточной воды в трубе, м/с Расход, л/сек
100 0,6 0,02 0,94 4,6
125 0,6 0,016 0,97 7,5
150 0,6 0,013 1,00 11,1
200 0,6 0,01 1,05 20,7
250 0,6 0,008 1,09 33,6
300 0,7 0,0067 1,18 62,1
350 0,7 0,0057 1,21 86,7
400 0,7 0,0050 1,23 115,9
450 0,7 0,0044 1,26 149,4
500 0,7 0,0040 1,28 187,9
600 0,7 0,0033 1,32 278,6
800 0,7 0,0025 1,38 520,0
1000 0,7 0,0020 1,43 842,0
1200 0,7 0,00176 1,48 1250,0

Линейное расширение

Смена геометрической формы изделий производится под силовым или температурным действием. Физические нагрузки, приводящие к линейному расширению или сжатию, негативно отражаются на эксплуатационных характеристиках. При невозможности компенсации расширения, трубы деформируются, что приводит к повреждению фланцевых уплотнителей и участков стыковки труб между собой.

Компонуя трубопроводные магистрали, следует ориентироваться на возможную смену длины при увеличении температурного режима или теплового линейного расширения (ΔL). Этот параметр определяется длиной труб, обозначаемой L o и разностью температурных режимов Δϑ =ϑ2-ϑ1.

В приведенной формуле коэффициент теплового линейного расширения для трубопровода протяженностью 1 м при увеличении температурного режима составляет 1°C.

Подробности

Определяя расход воды по диаметру, необходимо обязательно учитывать давление внутри труб.

К примеру, сквозь трубу в один метр, имеющую сечение один сантиметр, транспортируется намного меньше воды за такое же время, как через трубопрокат с диаметром в 20 метров. Самый большой показатель воды будет у труб с самым большим диаметром и с самым большим давлением внутри них.

Расход воды у трубы при оптимальном давлении. Расчет пропускной способности по диаметру трубопровода нужен, чтобы определить средний показатель водного расхода при хорошем напоре.

1.внутренний диаметр трубопрокатов.

3.максимальный показатель давления.

4.количество поворотов, затворов на магистрали.

5.материал труб, длина трубопровода.

Если подбирать диаметр трубы по объему расходуемой воды, учитывая данные таблицы, то сделать это просто, но данные будут неточными. Если учитывать давление и скорость жидкости в трубах, имеющихся на практике, произвести расчеты на месте, то показатели будут более верными.

Таблица приводит данные расчетов расхода жидкости по трубам с часто применяемым сечением и разных значениях давления.

Уровень давления зависит от многоэтажности здания, зависимость регулируют, разделяя систему водопровода на сегменты. Работа насосов для подачи воды изменяет скорость жидкости.

Обращаясь к данным таблицы, расчет потребления жидкости производят, учитывая количество кранов, водонагревательных приборов и ванн и т.д.

Изменяя характеристики проходимости труб посредством установки приборов, контролирующих и экономящих водорасход, типа WaterSave, изменяются данные, не соответствующие табличным значениям.

Как определить диаметр согласно СНиП 2.0.4.01 – 85.

Процесс расчета диаметра трубы относится к сложным, требующим инженерных знаний работам. Часто проектируя трубопроводную систему частного дома, все расчеты выполняют своими руками.

Данные расчета для определения водопропускного объема конструкции можно взять из таблицы, при этом надо точно знать сколько сантехнических приборов и кранов подключено к системе.

СНиП 2.04.01 – 85 предоставляет данные, которыми можно воспользоваться, имея вышеуказанные сведения. С помощью этих показателей устанавливают объем жидкости по сечению труб.

Согласно СНиП объем воды, расходуемый одним человеком в сутки, равен примерно шестидесяти литрам, если в доме нет организованного водопровода. Если жилье благоустроенно, то объем увеличивается до двухсот литров в сутки.

Данные показатели потребления по внешнему объему трубы могут быть интересны в качестве дополнительной информации. Но специалист вычисляет расход по объему трубы и давлению в ней. Не все данные содержатся в таблице, а точные вычисления можно сделать, только применив конкретные формулы.

Размер диаметра трубопровода влияет на расчет расхода воды. Не профессионалы могут воспользоваться формулой для получения данных, зная давление с диаметром труб.

Как вычислить расход жидкости, зная давление и диаметр.

Для расчетов применяют формулу q=π × d²/4 × V, в которой:

-d внутренний диаметр трубы в сантиметрах.

-V скорость транспортировки жидкости, измеряется м/с.

Если напор воды обеспечивает водонапорная башня, без нагнетающих насосов, значит, скорость жидкости равна 0.7 до 1.9 метров в секунду. При наличии работы насоса прикладывается паспорт с указанием коэффициента имеющегося напора и скоростью движения жидкости.

Внимание! Данная формула для расчетов считается наиболее доступной, но не единственной. Формула не учитывает качество внутренней поверхности трубы, к примеру, изделия из пластика внутри гладкие, не изменяют напор воды. Совсем иначе себя ведет внутренняя поверхность изделий из стали

Совсем иначе себя ведет внутренняя поверхность изделий из стали

Формула не учитывает качество внутренней поверхности трубы, к примеру, изделия из пластика внутри гладкие, не изменяют напор воды. Совсем иначе себя ведет внутренняя поверхность изделий из стали.

Показатель коэффициента сопротивления пластиковых труб меньше, продукция устойчива к образованию коррозии, и увеличивает качество пропускной способности системы.

Актуальный вопрос, какой же диаметр трубопровода применить

Принципиальная схема пароконденсатного тракта выглядит так. Работает котельная установка, которая вырабатывает пар,определенного параметра в определенном количестве. Далее открывается главная паровая задвижка и пар поступает в пароконденсатную систему, двигаясь в сторону потребителей. И тут появляется актуальный вопрос, какой же диаметр трубопровода применить?

Если взять трубу слишком большого диаметра, то это грозит:

  1. Увеличение стоимости монтажа
  2. Большие потери тепла в окружающую среду
  3. Большое количество конденсата, а значит и большое количество конденсатных карманов, конденсатоотводчиков, вентилей и тп

Если взять трубу слишком малого диаметра, то это грозит:

  1. Потеря давления ниже расчётного
  2. Повышенной скоростью пара, шумы в паропроводе
  3. Эрозийный износ, более частая замена оборудования из-за гидроударов

Расчёт диаметра паропровода

Существует два метода для выбора диаметра паропровода: первый это метод падения давления, а второй более простой и его применяет большинство из нас – метод скоростей.

Для того что бы вы не тратили своё время на поиск таблицы по расчёту методом скоростей, мы для вашего удобства выложили на этой странице эту информацию. Опубликованные рекомендации взяты из каталога завода изготовителя промышленной трубопроводной арматуры АДЛ .

Расчет потерь напора воды в трубопроводе

Чтобы выбрать насос для скважины, необходимо сделать расчёт потребного напора, а одна из частей определения потребного напора – это расчёт потерь напора в трубопроводе. Именно этой части вопроса посвящена данная статья.

Потеря напора в трубопроводе связана с тем, что поток воды, протекающий внутри трубы, испытывает сопротивление. Его величина зависит от:

  1. диаметра трубы – чем меньше диаметр, тем больше сопротивление
  2. скорости потока – чем больше скорость потока, тем больше сопротивление
  3. гладкости внутренней поверхности трубы.

Даже двигаясь по прямой, горизонтальной трубе, поток воды испытывает сопротивление, пусть и небольшое. При большой протяженности трубопровода суммарное сопротивление может оказаться значительным.

Расчёт потерь напора на прямых участках трубопровода

Чтобы не вдаваться в глубокие теоретические расчеты, можно воспользоваться уже готовыми таблицами с вычисленными данными для всех основных диаметров труб и расходов воды. Сейчас повсеместно используются полимерные трубопроводы – из полипропилена, полиэтилена низкого или высокого давления и других полимеров. Такие трубы имеют массу преимуществ перед стальными трубами: они легче, проще в монтаже, не подвержены коррозии, дешевле, более гладкие, и как следствие в них меньше потери напора.

В этой таблице приведены значения потери напора на 100 м трубопровода. Потеря напора указана в метрах водного столба.

Для стальных труб можно использовать эти же значения, умножив их на коэффициент 1,5.

Например, при расходе воды 0,5 м 3 /ч в трубопроводе с внутренним диаметром 19 мм и длиной 100 м потеря напора составляет 2,1 м.

Расчёт потери напора на местных сопротивлениях

Кроме того, потеря напора происходит в местных сопротивлениях: поворотах, изгибах, вентилях, заслонках, в разветвлениях трубопровода и в местах его сужения или расширения. Потери напора воды в них зависят от скорости потока и формы местного сопротивления.

Ниже в таблице приведены потери напора в основных местных сопротивлениях:

Потеря местного сопротивления указана в сантиметрах водного столба.

Расход воды соотносится со скоростью потока так:

где Q – это расход воды (в м 3 /с), S – площадь поперечного сечения (в м 2 ), v – скорость потока (в м/с). Площадь поперечного сечения для трубы S = π*D2/4, где D – внутренний диаметр трубы.

Например, при расходе воды 0,5 м 3 /ч (0,000138889 м 3 /с) в трубопроводе с внутренним диаметром 19 мм (S = 0,000283385 м 2 ), скорость потока составит

v = Q / S = 0,000138889 / 0,000283385 = 0,49 м/с

Местное сопротивление колена при этом будет 1,9 см, а клапана 32 см.

Как видно, потери напора на местных сопротивлениях – это самая малая часть потерь во всём трубопроводе. Они могут быть значительными только при больших скоростях потока, т.е. когда через тонкую трубу проходит большой объем воды. Использования более толстых труб, диаметр, которых, соответствует расходу воды, практически снимает проблему местных сопротивлений. При расчете потерь напора воды (и дальнейшем выборе насоса для скважины) достаточно заложить на местные сопротивления несколько метров напора, с небольшим запасом для верности – от 2 до 4 м.

Вместе с потерями напора воды в прямых участках трубопровода, эта цифра для небольшого загородного дома может уложиться в 5 м.

Для того, чтобы правильно выбрать насос для своей скважины, необходимо знать, потребный напор – т.е. напор, который необходим для водопроводной системы дома. В этой статье речь пойдёт о расчете потребного напора и расчете потерь напора в трубах водопровода на примере небольшого загородного дома.

В этой статье речь пойдет о характеристиках насосов и скважин, и о том, как правильно выбрать для своей скважины насос, исходя из имеющихся нужд.

Требования современного водопровода

Современный водопровод обязан отвечать всем характеристикам и требованиям. На выходе из крана вода обязана литься плавно, без рывков. Следовательно, в системе не должно быть перепадов давления при разборе воды. Идущая по трубам вода не должна создавать шума, иметь примеси воздуха и других посторонних накоплений, каковые пагубно воздействуют на керамические краны и другую сантехнику. Дабы не было этих неприятных казусов, давление воды в трубе не должно падать ниже своего минимума при разборе воды.

Нужно учитывать еще одну ответственную чёрта водопровода, связанную с расходом воды. В любом жилом помещении находится не одна точка разбора воды. Исходя из этого расчет водопровода обязан всецело снабжать потребность воды всех сантехнических устройств при одновременном включении. Данный параметр достигается не только давлением, но и объемом поступающей воды, которую может пропустить труба определенного сечения. Говоря несложным языком, перед монтажом требуется выполнить некоторый гидравлический расчет водопровода, с учетом давления и расхода воды.

Перед расчетом давайте поближе ознакомимся с двумя такими понятиями, как расход и давление, чтобы выяснить их сущность.

Как вычислить пропускную способность

Табличный способ – самый простой. Таблиц подсчета разработано несколько: можно выбрать ту, которая подойдет в зависимости от известных параметров.

Вычисление на основе сечения трубы

В СНиП 2.04.01-85 предлагается узнать количество потребления воды по обхвату трубы.

Внешнее сечение магистрали (мм) Приблизительное количество жидкости
В литрах в минуту В кубометрах в час
20 15 0,9
25 30 1,8
32 50 3
40 80 4,8
50 120 7,2
63 190 11,4

Расчет по температуре теплоносителя

С ростом температуры уменьшается проходимость трубы – вода расширяется и тем самым создает дополнительное трение.

Вычислить нужные данные можно по специальной таблице:

Трубное сечение (мм) Пропускная способность
По теплоте (гкл/ч) По теплоносителю (т/ч)
Вода Пар Вода Пар
15 0,011 0,005 0,182 0,009
25 0,039 0,018 0,650 0,033
38 0,11 0,05 1,82 0,091
50 0,24 0,11 4,00 0,20
75 0,72 0,33 12,0 0,60
100 1,51 0,69 25,0 1,25
125 2,70 1,24 45,0 2,25
150 4,36 2,00 72,8 3,64
200 9,23 4,24 154 7,70
250 16,6 7,60 276 13,8
300 26,6 12,2 444 22,2
350 40,3 18,5 672 33,6
400 56,5 26,0 940 47,0
450 68,3 36,0 1310 65,5
500 103 47,4 1730 86,5
600 167 76,5 2780 139
700 250 115 4160 208
800 354 162 5900 295
900 633 291 10500 525
1000 1020 470 17100 855

Поиск данных в зависимости от давления

При подборе труб для установки любой коммуникационной сети нужно учесть давление потока в общей магистрали. Если предусмотрен напор под высоким давлением, надо устанавливать трубы с большим сечением, чем при движении самотеком. Если при подборе трубных отрезков не учтены эти параметры, а по малым сетям пропускают большой водный поток, они станут издавать шум, вибрировать и быстро придут в негодность.

Чтобы найти наибольший расчетный водный расход, используется таблица пропускной способности труб в зависимости от диаметра и разных показателей давления воды:

Расход Пропускная способность
Сечение трубы 15 мм 20 мм 25 мм 32 мм 40 мм 50 мм 65 мм 80 мм 100 мм
Па/м Мбар/м Меньше 0,15 м/с 0,15 м/с 0,3 м/с
90,0 0,900 173 403 745 1627 2488 4716 9612 14940 30240
92,5 0,925 176 407 756 1652 2524 4788 9756 15156 30672
95,0 0,950 176 414 767 1678 2560 4860 9900 15372 31104
97,5 0,975 180 421 778 1699 2596 4932 10044 15552 31500
100,0 1000,0 184 425 788 1724 2632 5004 10152 15768 31932
120,0 1200,0 202 472 871 1897 2898 5508 11196 17352 35100
140,0 1400,0 220 511 943 2059 3143 5976 12132 18792 38160
160,0 1600,0 234 547 1015 2210 3373 6408 12996 20160 40680
180,0 1800,0 252 583 1080 2354 3589 6804 13824 21420 43200
200,0 2000,0 266 619 1151 2488 3780 7200 14580 22644 45720
220,0 2200,0 281 652 1202 2617 3996 7560 15336 23760 47880
240,0 2400,0 288 680 1256 2740 4176 7920 16056 24876 50400
260,0 2600,0 306 713 1310 2855 4356 8244 16740 25920 52200
280,0 2800,0 317 742 1364 2970 4356 8568 17338 26928 54360
300,0 3000, 331 767 1415 3078 4680 8892 18000 27900 56160

Так же, рассчитывая расход воды через трубу по таблице значений диаметра трубы и давления, учитывается не только количество кранов, но и численность водонагревателей, ванн и иных потребителей.

Гидравлический расчет по Шевелеву

Для наиболее верного выявления показателей всей водоснабжающей сети используют особые справочные материалы. В них определены ходовые характеристики для труб из разных материалов. В виде примера хорошего образца для расчетов можно назвать таблицу Шевелева. Это объемный справочник. Чтобы им воспользоваться, не обязательно идти в библиотеку. Все нужные данные можно найти во Всемирной сети. Кроме того, есть электронные программы на основе таблиц Шевелева. Достаточно ввести требуемые параметры, чтобы получить готовый результат.

Применение формул

Применение разных формул зависит от известных данных. Самая простая из них: q = π×d²/4 ×V. В формуле: q показывает расход воды в литрах, d – сечение трубы в см, V – скоростной показатель продвижения гидропотока в м/сек.

Скоростные параметры можно взять из таблицы:

Тип водоподведения Скорость (м/сек)
Городской водопровод 0,60–1,50
Магистральный трубопровод 1,50–3,00
Центральная сеть отопления 2,00–3,00
Напорная система 0,75–1,50

Знать, какими характеристиками обладают трубы, нужно для грамотного подключения сантехнических приборов. При правильном подборе данных не будет повода беспокоиться, что при открытии крана в ванной комнате вода на кухне перестанет идти либо снизится ее напор.

Источник

Правила подбора размера магистрали

Чтобы определить оптимальную величину внутреннего диаметра полипропиленовых труб, выполняют расчеты, используя в качестве базы исходные данные:

  • Скорость, с которой движется среда по трубам;
  • Норма потребления воды.

Если в качестве объекта выступает частный дом или особняк, то для определения диаметра полипропиленовых изделий, на основе которых будет устроена система водоснабжения, следует воспользоваться формулой:

Д=√((4)-Q-(1000/π∙v))

где v – скорость проходящего потока, м/с (принимается от 0,7…2 м/с);

π – число Пи, равное 3,14.

Непосредственно на этапе выбора труб для водопровода чаще всего ориентируются на показатель диаметра, равный 20 мм.

Свои особенности расчета диаметра для полипропиленовых труб имеются, если речь идет о многоэтажном доме. Здесь на каждом этапе строительства производится корректировка величины параметра. Причина этого связана с различиями при подведении воды в отдельную квартиру, подъезд, дом, квартал, микрорайон. Основное правило, которое здесь соблюдается: с увеличением нормы расхода воды растет и диаметр магистрали.

При устройстве систем водоснабжения для многоквартирных домов чаще всего используют полипропиленовые трубы, обладающие следующими размерами:

  • при устройстве стояков в пятиэтажных зданиях — 25 мм;
  • при создании разводки внутри жилых помещений — 20 мм;
  • при устройстве стояков в зданиях, предусматривающих 9 и более этажей — 32 мм.