Защита оборудования от импульсных перенапряжений по цепям питания 220/380в

Оглавление

Нормативная база применения УЗИП

Что такое УЗИП? Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002 «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

Согласно этому ГОСТу «Устройство для защиты от импульсных перенапряжений (УЗИП): устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсов тока. Это устройство содержит, по крайней мере, один нелинейный элемент». Стандарт распространяется на устройства для защиты электрических сетей и электрооборудования при прямом или косвенном воздействии грозовых или иных переходных перенапряжений. Данные устройства предназначены для подсоединения к силовым цепям переменного тока частотой 50-60 Гц на номинальное напряжение до 1000В (действующее значение) или 1500В постоянного тока.

В зависимости от класса испытаний УЗИП делятся на 3 типа.

Испытания класса I предназначены для имитации частично направленных грозовых импульсов тока. УЗИП, подвергаемые таким испытаниям, рекомендуются для установки на линейных вводах в здания, защищённые молниезащитными системами, а также при воздушном вводе питания. Характерной особенностью данного класса является испытание импульсным током Iimp c формой волны 10/350 мкс (1). Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up, который измеряется при In. Это «параметр, характеризующий УЗИП в части ограничения напряжения на его выводах, который выбран из числа предпочтительных значений». Его значение всегда выше остаточного напряжения Ures , т.е. пикового значения, появляющегося на выводах УЗИП вследствие прохождения разрядного тока заданной амплитуды. Up не должен превышать стойкость электрооборудования к импульсному напряжению, определённому в ГОСТ Р 50571.19-2000. Поэтому принято, что для УЗИП 1-го класса Up не превышает 4 кВ.

Стандартный испытательный импульс

Испытания класса II предназначены для имитации наведённого в проводниках под действием электромагнитного поля импульса. УЗИП, подвергаемые таким испытаниям (УЗИП 2-го класса), предназначены для установки после УЗИП 1-го класса в промежуточные шкафы, либо во вводной шкаф, если отсутствует вероятность попадания части прямого тока молнии в систему электроснабжения. Испытания проводятся номинальным разрядным током In и максимальным разрядным током Imax . Оба импульса имеют форму волны 8/20 мкс, но разную амплитуду. При этом Imax > In. Импульс In УЗИП должен выдержать многократно при условии его остывания до комнатной температуры в промежутке между импульсами. Обычно количество выдерживаемых импульсов от 5 до 15 (по ГОСТу количество не установлено и определяется производителем, по МЭКу – 15 импульсов). Импульс Imax УЗИП должен выдержать однократно, при этом его дальнейшая работа в соответствии с заявленными параметрами не гарантируется (но возможна). Уровень напряжения защиты Up для устройств 2-го класса не должен превышать 2,5 кВ.

Испытания класса III также имитируют наведённый импульс, но испытываются комбинированной волной напряжения 1,2/50 мкс и тока 8/20 мкс. При этом в параметрах указывается напряжение разомкнутой цепи Uoc и номинальный In и максимальный Imax токи. Уровень напряжения защиты Up для 3-го класса не должен превышать 1,5 кВ. Это тот уровень, который должна выдерживать техника, даже не проходившая испытаний на устойчивость к микросекундным импульсным перенапряжениям. Поэтому данные устройства рекомендуется использовать в непосредственной близости от защищаемого оборудования (желательно не далее 5-7 метров, а в общем, чем ближе, тем лучше).

Ещё несколько важных параметров, которые необходимо знать для подбора УЗИП.

Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на выводы УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения при различных нештатных режимах работы сети.

Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Данный параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. Так как большинство УЗИП подключаются параллельно цепи, то данный параметр у них не указывается.

Ошибки при подключении

  • Плохое заземление: перед монтажом УЗИП необходимо удостоверится в надёжности заземления – оно должно выдерживать сбрасываемые на него импульсы и быть в исправном состоянии, иначе в первой же грозе сгорит, потянув за собой на тот свет всю электрощитовую.
  • Ошибка в схеме подключения: устройство надо ставить со знанием схемы заземления, используемой в щитке. Если такого знания нет, лучше доверить монтаж специалисту, обслуживающего домовые электролинии, либо максимально близко знакомого с ними.
  • Не тот класс, не в том месте: есть несколько классов УЗИП, и каждый из них предназначен для определённых типов щитовых. Неправильный подбор устройства может стоить жизни домашней технике.

Похожее: Диф автомат и УЗО: в чем разница

Несмотря на состояние современных энергосетей, с их перебоями, устаревшей проводкой, и прочими радостями страны третьего мира, мы продолжаем использовать технику. И что бы ни случилось, можно надеется, в том числе, на окружающие защитные механизмы.

Варианты подключения

Одним из важнейших вопросов является, как подключить УЗИП в щитке. Практически все варианты подключения идентичны и указаны в техническом паспорте изделия. Способы монтажа приборов защиты могут отличаться, в зависимости, где они будут установлены, в однофазной или трехфазной сети, также в зависимости от системы заземления.

Самой современной и отвечающая всем требованиям безопасности является система заземления tn-s, при которой нулевой рабочий (N) и нулевой защитный (PE) провод во всей системе энергоснабжения работают раздельно. Система tn-c-s представляет комбинированный вариант, при котором N и PE от источника питания до ВРУ дома объединены в один провод, после которого начинается разделение нулевого и защитного проводника. Следует помнить, что данная схема не будет работать без заземления, поэтому необходимо обязательно произвести его обустройство. Система tn-c наиболее простая и распространенная в устаревшем жилом фонде система заземления, при которой роль нулевого и рабочего проводника выполняет один провод (PEN).

Ниже на схеме показано, как подключить УЗИП класса II в однофазной сети, установленного в щитке квартиры или частного дома с двумя вариантами системы заземления. Для такого варианта подключения необходимо подобрать простейший одноблочный защитный аппарат, с соответствующим рабочим напряжением.

Схема подключения с системой заземления tn-c:

Если предусмотрена система заземления tn-s, в данном случае потребуется установка и подключение УЗИП, состоящего из двух модулей, конструкцией которого предусмотрены отдельные клеммы, для подключения фазного, нулевого рабочего и защитного проводов, обозначенные соответствующей маркировкой.

Подключение УЗИП в трехфазной сети осуществляется так, как показано на фото:

При монтаже УЗИП следует предусмотреть средства защиты сети в случае короткого замыкания в приборе и произвести его подключение через автомат или через предохранитель. Установку аппарата можно производить до и после счетчика, во втором случае прибор учета электроэнергии останется не защищенным от импульсного перенапряжения.

На видео ниже наглядно демонстрируется, как подключить данный аппарат в щитке:

https://youtube.com/watch?v=fQ9mdnDDY4o

Вот мы и рассмотрели, как должно выполняться подключение УЗИП в щитке. Надеемся, предоставленная схема, видео и фото примеры пригодились вам и помогли понять, как подключить данный защитный аппарат.

Будет полезно прочитать:

  • Как сделать заземление в доме
  • Для чего нужно УЗО в квартире
  • Как сделать громоотвод своими руками
  • Схемы подключения реле напряжения

Ошибки при подключении

1. Установка УЗИП в электрощитовую с плохим контуром заземления.

При допущении подобной ошибки можно лишиться не только всех электроприборов, но и самой щитовой при первом попадании молнии, так как от защиты с плохим контуром заземления не будет никакого толку, и соответственно никакой защиты.

2. Неправильно выбранное УЗИП, которое не подходит под используемую систему заземления.

Перед покупкой устройства обязательно узнайте какая система заземления используется в вашем доме, а при покупке тщательно ознакомьтесь с его техдокументацией во избежание ошибок.

3. Использование УЗИП не того класса.

Как уже разбирали выше, есть 3 класса устройств защиты от импульсного перенапряжения. Каждый класс соответствует определенной щитовой, и должен устанавливаться согласно правилам и нормам.

4. Установка УЗИП только одного класса.

Часто бывает недостаточно установки УЗИП одного класса для надежной защиты.

5. Перепутан класс устройства и место его назначения.

Бывает и такое, что приборы класса B ставятся в распределительный щит квартиры, приборы класса С в ВРУ здания, а приборы класса D перед электронной аппаратурой.

Watch this video on YouTube

Watch this video on YouTube

УЗИП конечно вещь хорошая и нужная, но ее использование в электропитании дома не является обязательным. В случае подключения данного устройства стоит помнить, что оно подбирается индивидуально для каждой системы заземления. Именно по этой причине непосредственно перед покупкой рекомендуется воспользоваться услугами опытного электрика, дабы избежать неприятностей.

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Какие виды систем заземления существуют и что такое защитное заземление?

Как установить дверной электрический звонок — пошаговая инструкция

Что такое реле напряжения и для чего оно нужно в квартире

Что такое варистор, основные технические параметры, для чего используется

Принцип работы и схема подключения теплового реле

Перенапряжение в результате коммутации

Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети.

Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала.

Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают.

Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей:

  • Индуктивность нагрузки.
  • Моментальное значение разности потенциалов при коммутации.

  • Емкость подключающих электрических кабелей.
  • Реактивная мощность.

Автоматы или предохранители перед УЗИП


Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.

Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

Защита от импульсного перенапряжения: частный дом с однофазным питанием

Монтаж электропроводки в частном доме, особенно выполненном из древесины и горючих материалов, требует тщательного соблюдения правил электрической безопасности.

Необходимо учесть, что здание может быть запитано по разным схемам заземления:

  • типовой старой TN-C;
  • либо современной, более безопасной TN-S или ее модификациям.

Разберем оба случая.

Схема подключения УЗИП: 2 варианта по системе заземления TN-S

На картинке ниже представлена развернутая схема с защитой комбинированного класса 1+2, которое используется для установки после вводного автоматического выключателя.

Варистор ограничителя перенапряжения встроен в корпус модуля, защищает электрическую схему от прямых или удаленных атмосферных разрядов молний.

Традиционный для всех УЗИП сигнальный флажок имеет два цвета:

  1. зеленое положение свидетельствует об исправности устройства и готовности к работе;
  2. красное — о необходимости замены в случае срабатывания или перегорания.

Такой модуль может применяться во всех системах заземления, а не только TN-S. Он имеет 3 клеммы подключения:

  1. сверху слева L — фазный провод;
  2. сверху справа PE — защитный проводник заземления;
  3. снизу N — нулевой провод.

УЗИП защищает электросчетчик и все цепи после него.

На очередной схеме показан вариант использования защиты с УЗО. После него создается дополнительная шинка рабочего нуля N1, от которой запитаны все потребители квартиры.

Схема вроде понятна, вопросов не должно возникнуть.

Для дополнительных систем заземления TN-C-S и ТТ предлагаю к изучению и анализу еще две схемы. У них УЗИП монтируется тоже во вводном устройстве.

Цепи подключения счетчика, реле контроля напряжения РКН и УЗО, а также потребители подробно не показываю. Но принцип понятен: используется защитная шина PE.

А вот в старой системе заземления ее нет, за счет чего снижается надежность и безопасность. Но все же она осуществляет защиту, поэтому и рассматривается.

Схема подключения УЗИП по системе заземления TN-C

Отсутствие шины РЕ диктует необходимость подключения УЗИП только между потенциалами фазного провода и PEN. Других вариантов просто нет.

Слева показан способ монтажа защиты для однофазной проводки, а справа — трехфазной.

Импульс перенапряжения снимается по принципу создания искусственного короткого замыкания в питающей цепи.

Информация о компании

АСБЕРГ АС, ООО

Компания «АСберг АС» – это один из крупнейших дистрибьюторов ABB, Schneider Electric, Klemsan, ABL SURSUM, LSIS. Компания сотрудничает с такими значимыми игроками рынка электротехники и промышленной автоматизации, как Rittal, Legrand, Finder, DKC, ОВЕН, MOXA и многими другими, осуществляя прямые поставки их продукции. «АСберг АС» занимается дистрибуцией низковольтного электрооборудования, а также поставкой, проектированием, монтажом и сервисным обслуживанием низковольтных и средневольтных комплектных устройств, оборудования и трансформаторных подстанций.

Защита дома от грозы

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:

интернет

TV

видеонаблюдение

охранная сигнализация

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

ОПН — ограничители перенапряжения

Причин, по которым происходит перенапряжение, может быть несколько. Прежде всего стоит отметить, что к электросети подключено немалое количество потребителей, включая объекты промышленного и строительного назначения. Казалось бы, какое это имеет значение? Но дело в том, что если, к примеру, тысяча человек одновременно включит приборы высокой мощности, к которым относятся чайники, СВЧ-печи, кондиционеры, стиральные машины и ряд некоторой техники, то случится скачок напряжения.

Иногда по вечерам можно наблюдать такое явление, о чем сигнализируют лампочки. Однако при этом серьезной опасности для техники не существует. Совсем иначе обстоит дело, если на всем заводе или крупном строительном объекте сразу будут включены или отключены все приборы.

Предлагаем ознакомиться: Пристройка к бане в виде беседки

В этом случае только ограничитель перенапряжений и спасает ситуацию. Такое может произойти, если электросеть сообщается с каким-нибудь крупным предприятием или строительством.

Среди прочих причин можно выделить:

  • резкое изменение нагрузки распределительной системы;
  • повреждения энергоустановок, вызывавших короткое замыкание;
  • человеческий фактор;
  • прохождение грозового разряда вблизи линии электропередачи (ЛЭП);
  • удар молнии непосредственно в ЛЭП.

Ограничители перенапряжения являются следующим этапом эволюции устройств, защищающих от импульсных бросков напряжения. Данный прибор не содержит воздушных промежутков. Основным элементом устройства является варистор. Если быть более точным, набор варисторов. Для получения необходимых рабочих характеристик варисторы соединяются между собой в последовательные или параллельно – последовательные блоки.

Основу варистора составляет оксид цинка. В процессе изготовления варистора добавляются также оксиды других металлов. СтабЭксперт.ру напоминает, что в результате, готовое изделие представляет собой набор p–n переходов, соединённых параллельно и последовательно. Наличие данных полупроводниковых переходов определяет нелинейные свойства варистора.

Ограничители перенапряжения имеют некоторые конструктивные и функциональные различия. Классификация ОПН осуществляется по следующим признакам:

  • материалу изоляции;
  • конструкции устройств;
  • рабочему напряжению;
  • месту монтажа.

По поводу изоляции уже было сказано, применяется фарфор либо полимерная композиция. Конструктивно ограничители перенапряжения бывают одноколонковыми и многоколонковыми. ОПН выпускаются для каждого класса напряжения: 6-10 киловольт и выше. Монтируются ограничители перенапряжения в закрытых или открытых распределительных устройствах (ЗРУ, ОРУ).

Принцип действия

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

зеленый индикатор – модуль рабочий

красный – модуль нужно заменить

При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Схема прибора серии VC-122

Устройство защиты от импульсных перенапряжений и помех указанной серии подходит для понижающих трансформаторов. Также модель активно используется в щитках серии РС

В первую очередь важно отметить, что у модели применяется высоковольтный модулятор. Параметр выходной проводимости у него равен 2 мк. Для щитков РС19 модель подходит

Модулятор в данном случае подсоединяется через обкладку

Для щитков РС19 модель подходит. Модулятор в данном случае подсоединяется через обкладку.

Фильтры разрешается использовать лишь проходного типа. Если рассматривать щитки серии РС20, то у них имеется демпфер. Расширитель для подключения используется магнитного типа

Также важно отметить, что понижающие трансформаторы на 200 В применяться не могут

Подробности Опубликовано: 29 Сентябрь 2015 Просмотров: 25575

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта «начинка» щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать «фазу», а куда «ноль» можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Также рекомендуется защищать устройства УЗИП с помощью предохранителей.

Думаю тут все понятно.

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Нет постояннее соединения, чем временная скрутка!

Вот здесь нужно быть очень внимательным. Неправильный выбор автоматического выключателя по номиналу может привести к возгоранию проводки или автомат будет срабатывать на отключение по пять раз.

У вас дома в квартирном щитке сработал автоматический выключатель. В итоге какая-то часть квартиры обесточилась. В такой ситуации оказывался практически каждый. Какие ваши дальнейшие действия.

Лампочки перегорали, перегорают и будут перегорать иначе не выгодно их производить. Сами подумайте завод изготовил одну лампочку, человек ее купил, вкрутил у себя дома и она работает положенны.

Кабели и провода играют одну из самых важных ролей в электропитании вашего дома. Не правильный выбор сечения может привести к перегреву изоляции, ее пробою, короткому замыканию и к серьезным п.

Друзья, уважайте чужой труд и при копировании материалов, пожалуйста, ставьте открытую ссылку на источник sam-sebe-electric.ru, а то свет отключу. |