Плотность и удельный вес жидкостей

Оглавление

Таблица общих значений удельного объема

Инженеры и ученые обычно ссылаются на таблицы конкретных значений объема. Эти репрезентативные значения относятся к стандартной температуре и давлению (STP), которые представляют собой температуру 0 ° C (273,15 К, 32 ° F) и давление 1 атм.

вещество плотность Удельный объем
(Кг / м 3 ) (м 3 /кг)
Воздух 1.225 0.78
лед 916.7 0.00109
Вода (жидкость) 1000 0.00100
Соленая вода 1030 0.00097
Меркурий 13546 0.00007
R-22 * 3.66 0.273
аммоний 0.769 1.30
Углекислый газ 1.977 0.506
хлор 2.994 0.334
водород 0.0899 11.12
метан 0.717 1.39
азот 1.25 0.799
Пар* 0.804 1.24

Вещества, отмеченные звездочкой (*), не указаны в STP.

Поскольку материалы не всегда находятся в стандартных условиях, существуют также таблицы для материалов, в которых указаны конкретные значения объема в диапазоне температур и давлений. Вы можете найти подробные таблицы для воздуха и пара.

Таблица общих значений удельного объема

Инженеры и ученые обычно ссылаются на таблицы конкретных значений объема. Эти репрезентативные значения относятся к стандартной температуре и давлению (STP), которые представляют собой температуру 0 ° C (273,15 К, 32 ° F) и давление 1 атм.

вещество плотность Удельный объем
(Кг / м 3 ) (м 3 /кг)
Воздух 1.225 0.78
лед 916.7 0.00109
Вода (жидкость) 1000 0.00100
Соленая вода 1030 0.00097
Меркурий 13546 0.00007
R-22 * 3.66 0.273
аммоний 0.769 1.30
Углекислый газ 1.977 0.506
хлор 2.994 0.334
водород 0.0899 11.12
метан 0.717 1.39
азот 1.25 0.799
Пар* 0.804 1.24

Вещества, отмеченные звездочкой (*), не указаны в STP.

Поскольку материалы не всегда находятся в стандартных условиях, существуют также таблицы для материалов, в которых указаны конкретные значения объема в диапазоне температур и давлений. Вы можете найти подробные таблицы для воздуха и пара.

Плотность воды в зависимости от температуры

Принято считать, что плотность воды равна 1000 кг/м3, 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?

Максимальная плотность воды достигается при температуре 3,8…4,2°С. В этих условиях точное значение плотности воды составляет 999,972 кг/м3. Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.

Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м3 и г/мл.

В таблице приведены значения плотности воды в кг/м3 и в г/мл (г/см3), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м3 или 0,9971 г/мл.

Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м3. Плотность соленой воды и водных растворов солей можно узнать в этой таблице. Плотность воды при различных температурах — таблица

t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл
999,8 0,9998 62 982,1 0,9821 200 864,7 0,8647
0,1 999,8 0,9998 64 981,1 0,9811 210 852,8 0,8528
2 999,9 0,9999 66 980 0,98 220 840,3 0,8403
4 1000 1 68 978,9 0,9789 230 827,3 0,8273
6 999,9 0,9999 70 977,8 0,9778 240 813,6 0,8136
8 999,9 0,9999 72 976,6 0,9766 250 799,2 0,7992
10 999,7 0,9997 74 975,4 0,9754 260 783,9 0,7839
12 999,5 0,9995 76 974,2 0,9742 270 767,8 0,7678
14 999,2 0,9992 78 973 0,973 280 750,5 0,7505
16 999 0,999 80 971,8 0,9718 290 732,1 0,7321
18 998,6 0,9986 82 970,5 0,9705 300 712,2 0,7122
20 998,2 0,9982 84 969,3 0,9693 305 701,7 0,7017
22 997,8 0,9978 86 967,8 0,9678 310 690,6 0,6906
24 997,3 0,9973 88 966,6 0,9666 315 679,1 0,6791
26 996,8 0,9968 90 965,3 0,9653 320 666,9 0,6669
28 996,2 0,9962 92 963,9 0,9639 325 654,1 0,6541
30 995,7 0,9957 94 962,6 0,9626 330 640,5 0,6405
32 995 0,995 96 961,2 0,9612 335 625,9 0,6259
34 994,4 0,9944 98 959,8 0,9598 340 610,1 0,6101
36 993,7 0,9937 100 958,4 0,9584 345 593,2 0,5932
38 993 0,993 105 954,5 0,9545 350 574,5 0,5745
40 992,2 0,9922 110 950,7 0,9507 355 553,3 0,5533
42 991,4 0,9914 115 946,8 0,9468 360 528,3 0,5283
44 990,6 0,9906 120 942,9 0,9429 362 516,6 0,5166
46 989,8 0,9898 125 938,8 0,9388 364 503,5 0,5035
48 988,9 0,9889 130 934,6 0,9346 366 488,5 0,4885
50 988 0,988 140 925,8 0,9258 368 470,6 0,4706
52 987,1 0,9871 150 916,8 0,9168 370 448,4 0,4484
54 986,2 0,9862 160 907,3 0,9073 371 435,2 0,4352
56 985,2 0,9852 170 897,3 0,8973 372 418,1 0,4181
58 984,2 0,9842 180 886,9 0,8869 373 396,2 0,3962
60 983,2 0,9832 190 876 0,876 374,12 317,8 0,3178

Следует отметить, что при увеличении температуры воды (выше 4°С) ее плотность уменьшается. Например, по данным таблицы, плотность воды при температуре 20°С равна 998,2 кг/м3, а при ее нагревании до 90°С, величина плотности снижается до значения 965,3 кг/м3. Удельная масса воды при нормальных условиях значительно отличается от ее плотности при высоких температурах. Средняя плотность воды, находящейся при температуре 200…370°С намного меньше ее плотности в обычном температурном диапазоне от 0 до 100°С.

Смена агрегатного состояния воды приводит к существенному изменению ее плотности. Так, величина плотности льда при 0°С имеет значение 916…920 кг/м3, а плотность водяного пара составляет величину в сотые доли килограмма на кубический метр. Следует отметить, что значение плотности воды почти в 1000 раз больше плотности воздуха при нормальных условиях.

Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.

Формула удельного объема

Для расчета удельного объема (ν) используются три общие формулы:

  1. ν = В / м где V — объем, а m — масса
  2. ν = 1 /ρ = ρ -1 где ρ — плотность
  3. ν = RT / PM = RT / P где R — идеальная газовая постоянная, T — температура, P — давление, а M — молярность.

Второе уравнение обычно применяется к жидкостям и твердым веществам, потому что они относительно несжимаемы. Уравнение может использоваться при работе с газами, но плотность газа (и его удельный объем) может резко измениться с небольшим увеличением или снижением температуры.

Третье уравнение применимо только к идеальным газам или к реальным газам при относительно низких температурах и давлениях, которые приближаются к идеальным газам.

Влияние состава грунта на его удельный вес. Вес грунта 2 группы в 1 м3 таблица

АлевролитыАргилитыВечномерзлые и мерзлые сезонно-протающие грунтыГлинаГравийно-галечные грунты (кроме моренных)Грунты ледникового происхождения (моренные)Грунт растительного слояДиабазыДоломитыЗмеевик (серпентин)ИзвестнякиКварцитыКонгломераты и брекчииКоренные глубинные породы (граниты, гнейсы, диориты, сиениты, габбро и др.)Коренные излившиеся породы (андезиты, базальты, порфириты, трахтиты и др.)ЛёссМелМергельМусор строительныйПесокПесчаникРакушечникиСланцыСолончаки и солонцыСуглинкиСупесиТорфТрепелЧернозёмы и каштановые грунтыЩебеньШлакиПрочие грунты

Понятие о плотности, удельном весе и удельном объеме морской воды

Изображение Johannes Plenio с сайта Pixabay

§ 33. Понятие о плотности, удельном весе и удельном объеме морской воды

Плотность — важнейшее физическое свойство морской воды. Ее изменения определяют многие физические и динамические процессы в Мировом океане. Под плотностью, как известно, понимается отношение массы вещества к его объему (m/V=ρ), т. е. это масса единицы объема. Плотность — величина размерная и в системе СИ выражается в килограммах на кубический метр (кг/м3). Плотность пресной воды при 4° С в системе СИ равна 1000 кг/м3, а морской при 15° С — 1020 — 1030 кг/м3 в зависимости от солености. Понятие «плотность» тесно связано с понятием «удельный вес», через который в океанологии принято выражать плотность.

Удельный вес морской воды

Удельный вес морской воды — это отношение веса единицы объема морской воды при температуре t к весу единицы объема дистиллированной воды при той же температуре и нормальном атмосферном давлении.

В океанологии в качестве стандартной принята температура 17,5°С (средняя температура лабораторного помещения), к которой приводится значение удельного веса морской воды, измеренного при любой температуре.

Удельный вес морской воды зависит только от солености и выражается не системной единицей г/см3.

В океанологической практике введено понятие условного удельного веса

(13)

Удельный вес и плотность морской воды незначительно отклоняются от единицы, поэтому для сокращения записи из числа, выражающего удельный вес, вычитают единицу и переносят запятую на три знака вправо. Например, удельный вес ρ17.5 = 1,02624 записывают как 26,24.

Под плотностью морской воды в океанологии понимают удельный вес морской воды при температуре, которую она имела в данном месте, на данной глубине (in situ), отнесенный к дистиллированной воде при температуре ее наибольшей плотности 4° С.

По той же причине малых изменений и необходимости высокой точности определений введено понятие об условной плотности

(19)

При решении некоторых гидрофизических задач вместо Ϭtиспользуется условный удельный вес при 0° С (Ϭ0)

(20)

Во многих гидродинамических расчетах вместо условной плотности удобнее пользоваться обратной ей величиной, называемой удельным объемом, т. е. объем единицы массы

(21)

Так как удельный объем всегда больше 0,9 и меньше 1,0, то по аналогии с условными удельным весом и плотностью введено понятие условного удельного объема

(22)

Океанологические таблицы

На основании лабораторных исследований Комиссии Международного совета по изучению морей (1889 г.) были установлены соотношения между содержанием хлора, соленостью, условным удельным весом и условной плотностью при температуре 0°С. Эмпирические формулы, связывающие эти величины, были использованы для расчета таблиц, опубликованных в различных международных пособиях (впервые в таблицах Кнудсена, 1901 г.) и в отечественных «Океанологических таблицах», составленных Н. Н. Зубовым. В табл. 14 приводится образец таблицы соответствия величин (из «Океанологических таблиц»).

Таблица 14

Соответствие величин Cl, S, Ϭ и ρ17.5

Сl S‰ Ϭ ρ17.5
19,00 34,33 27,58 26,22
19,01 34,34 27,60 26,23
19,02 34,36 27,61 26,24
19,03 34,38 27,63 26,26

С помощью таблиц, определив ареометрированием условный удельный вес ρ17.5, можно получить значения Сl (хлора), S (солености) и Ϭ0 (удельного веса). Определив титрованием содержание хлора, можно получить значения S‰, ρ17.5 и Ϭ0.

В «Океанологических таблицах» приводятся таблицы для прямого определения условной плотности и удельного объема по температуре и солености.

Вас так же могут заинтересовать:

Распределение плотности на Поверхности и по глубинам в Мировом океане

Давление и сжимаемость морской воды. Адиабатические процессы

Post Views: 298

Что такое плотность жидкости

Плотность жидкости — это отношение массы жидкости к объёму, который она занимает.

Если две жидкости одинаковой массы налить в сосуды, то их объемы будут разниться. Причина этому — плотность, т.е. расстояние между молекулами и атомами, образующими внутреннее строение. Эта величина скалярная и обозначается буквой ρ. В литературе можно встретить и другие обозначения, например D и d (в переводе с латинского densitans).

Примечание

Понятие плотности касается однородных веществ, в т.ч. в жидком состоянии. Если однородность отсутствует, говорят о средней плотности либо плотности в одной точке.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Обычная вода при температуре 4С имеет максимальное ее значение — 1000 кг/м3. Многие жидкие продукты питания имеют близкое значение плотности. Например, обезжиренное молоко, раствор уксуса, вино. В то же время для сока из ананаса аналогичное значение составляет 1084, из винограда — 1361, апельсина — 1043 кг/м3. Пиво имеет плотность 1030 кг/м3.

Многие жидкости менее плотны, чем вода, это:

  • спирт этиловый (789 кг/м3);
  • нефть (от 730 до 940 кг/м3);
  • бензин (от 680 до 800 кг/м3);
  • ДТ (879 кг/м3).

Использование определенного объема

Удельный объем чаще всего используется в инженерных и термодинамических расчетах для физики и химии. Он используется для прогнозирования поведения газов при изменении условий.

Рассмотрим воздухонепроницаемую камеру, содержащую заданное количество молекул:

  • Если камера расширяется, а число молекул остается постоянным, плотность газа уменьшается, а удельный объем увеличивается.
  • Если камера сжимается, а количество молекул остается постоянным, плотность газа увеличивается, а удельный объем уменьшается.
  • Если объем камеры поддерживается постоянным, а некоторые молекулы удаляются, плотность уменьшается, а удельный объем увеличивается.
  • Если объем камеры поддерживается постоянным во время добавления новых молекул, плотность увеличивается, а удельный объем уменьшается.
  • Если плотность удваивается, ее удельный объем уменьшается вдвое.
  • Если удельный объем удваивается, плотность уменьшается вдвое.

Подпишитесь на RSS и Вы будете получать информацию об обновлениях сайта на Ваш RSS канал!

Дата: 2008-12-08

Жидкость — непрерывная среда, обладающая свойством текучести, т. е. способная неограниченно изменять свою форму под действием сколь угодно малых cил, но в отличие от газа мало изменяющая свою плотность при изменении давления.

В аэромеханике применяют термин «капельная жидкость» с целью под­черкнуть отличие жидкости от газа; газ в этих случаях называют «сжимае­мой жидкостью».

Жидкости бывают идеальные и реальные. Идеальные – невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные – вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений.

Реальные жидкости могут быть ньютоновскими и неньютоновскими (бингамовскими). В ньютоновских жидкостях при движении одного слоя жидкости относительно другого величина касательного напряжения пропорциональна скорости сдвига. При относительном покое эти напряжения равны нулю. Такая закономерность была установлена Ньютоном в 1686 году, поэтому эти жидкости (вода, масло, бензин, керосин, глицерин и др.) называют ньютоновскими жидкостями. Неньютоновские жидкости не обладают большой подвижностью и отличаются от ньютоновских жидкостей наличием касательных напряжений (внутреннего трения) в состоянии покоя.

Основные свойства жидкостей: плотность, удельный вес, вязкость, сжимаемость и др.

Плотность ρ – масса жидкости в единице объема. Для однородной жидкости

где m – масса жидкости в объеме V. Единицы измерения ρ в системе СГС – г/см 3 , в системе МКГСС – кгс·с 2 /м 4 , а в системе СИ – кг/м 3 .

Удельный вес γ – вес жидкости в единице объема:

где G – вес жидкости. Единицы измерения γ в системе СГС – дин/см 3 , в системе МКГСС – кгс/м 3 , а в системе СИ – Н/м 3 .

Удельный вес и плотность связаны между собой зависимостью γ=ρ·g, где g – ускорение свободного падения.

Плотность и удельный вес некоторых технических жидкостей.

Жидкость t, 0 С ρ, кг/м 3 ; γ, кгc/м 3 γ, H/м 3 ρ, кгc&middotc 2 /м 4
Автол 10 20 920 9025 93,8
Алкоголь (безводный) 20 795 7799 81,0
Аммиак -34 684 6710 69,7
Анилин 15 1004 9849 102
Ацетон 15 790 7750 80,5
Бензин 15 680 – 740 6671 – 7259 69,3 – 75,4
Битум 930 – 950 9123 – 9320 94,8 – 96,8
Вода дистиллированная 4 1000 9810 102
Вода морская 4 1020-1030 10006-10104 104-105
Глицирин (безводный) 15 1270 11772 129
Гудрон 15 930-950 9123-9320 94,8-96,8
Деготь каменно-угольный 15 1200 12459 122
Керосин 15 790 – 820 7750-8044 80,5 – 93,5
Мазут 15 890 – 940 8731 – 9221 90,7 – 95,8
Масло:
-вазелиновое 20 860 – 890 8437 – 8731 87,7 – 90,7
-индустриальное 12 20 876 – 891 8594 – 8741 89,3 – 90,8
-индустриальное 20 20 881 – 901 8643 – 8839 89,8 – 93,3
-индустриальное 30 20 886 – 916 8692 – 8986 90,3 – 93,4
-индустриальное 45 и 50 20 890 – 930 8731 – 9123 90,7 – 94,8
-индустриальное 45 и 50 20 890 – 930 8731 – 9123 90,7 – 94,8
-касторовое 20 960 9418 97,8
-машинное 20 898 8809 91,5
-трансформаторное 20 887 – 896 8701 – 8790 90,4 – 91,3
-турбинное 30 и 32 20 894 – 904 8770 – 8868 91,1 – 92,1
Молоко цельное 20 1029 10094 103
Нефть натуральная 15 700 – 900 6867 – 8829 71,4 – 91,7
Пиво 15 1040 10202 106
Ртуть 20 13546 132886 1381
Спирт метиловый 15 810 7946 82,6
Спирт этиловый 15-18 790 7750 80,5
Чугун расплавленный 17 1210 11870 123

Читать также: Лазер станок по дереву

Плотность воды и ртути при разных температурах.

Просмотров: 164260

Комментарии к этой статье!!

Комментарий добавил(а): mqsqt Дата: 2011-09-03

Комментарий добавил(а): Баштаг Дата: 2012-10-29

Комментарий добавил(а): Саня Дата: 2013-11-12

Комментарий добавил(а): Ир Дата: 2014-01-15

Комментарий добавил(а): ир Дата: 2014-04-28

Комментарий добавил(а): lelik Дата: 2014-10-20

Nicego ne ponyala

Комментарий добавил(а): sens Дата: 2014-10-23

Спасибо огромное за таблицу ж-тей. Очень пригодилась. ))))

Комментарий добавил(а): юрий Дата: 2014-12-30

Комментарий добавил(а): эдльд Дата: 2015-01-28

Комментарий добавил(а): Виталий Дата: 2018-05-14

Большое спасибо за материал

Добавить Ваш комментарий

ВИДЕОКУРС Ваша Первая Зеркалка

8 разделов по всем аспектам фотосъемки; 73 видеоурока; 6 часов 31 минута самых лучших материалов; 5,7 Гб материала на двухслойном DVD;

Формула зависимости массы от объема и плотности

Для того, чтобы найти плотность жидкости или твердого вещества, существует базовая формула: плотность равна массе, поделенной на объем.

Записывается это так:

И из нее можно вывести еще две формулы.

Формулу для объема тела:

А также формулу для расчета массы:

Как видите, запомнить последнюю очень легко: это единственная формула, где две единицы нужно умножить.

Для запоминания этой зависимости можно использовать рисунок в виде «пирамидки», разделенной на три секции, в вершине которой находится масса, а в нижних углах – плотность и объем.

Несколько иначе обстоят дела с газами.

Рассчитать их вес гораздо сложнее, так как у газов нет постоянной плотности: они рассеиваются и занимают весь доступный им объем.

Для этого пригодится понятие молярной массы, которую можно найти, сложив массу всех атомов в формуле вещества при помощи данных из периодической таблицы.

Вторая единица, которая нам понадобится – количество вещества в молях. Его можно вычислить по уравнению реакции. Подробнее об этом можно узнать в рамках курса химии.

Другой способ нахождения мольного количества – через объем газа, который нужно поделить на 22,4 литра. Последнее число – это объемная постоянная, которую стоит запомнить.

В итоге, зная две предыдущие величины, мы можем определить массу газа:

где M – это молярная масса, а n – количество вещества.

Результат получится в граммах, поэтому для решения физических задач важно не забыть перевести его в килограммы, поделив на 1000. Числа в этой формуле часто могут оказываться достаточно сложными, поэтому для вычислений может понадобиться калькулятор

Еще один нестандартный случай, с которым можно столкнуться – необходимость найти плотность раствора

. Для этого существует формула средней плотности, построенная аналогично формулам других средних величин.

Для двух веществ посчитать ее можно так:

Также из этой формулы можно вывести несколько других в зависимости от того, какие из величин известны по условию задачи.

Плотность воды в зависимости от температуры

Принято считать, что плотность воды равна 1000 кг/м3, 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?

Максимальная плотность воды достигается при температуре 3,8…4,2°С. В этих условиях точное значение плотности воды составляет 999,972 кг/м3. Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.

Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м3 и г/мл.

В таблице приведены значения плотности воды в кг/м3 и в г/мл (г/см3), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м3 или 0,9971 г/мл.

Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м3. Плотность соленой воды и водных растворов солей можно узнать в этой таблице. Плотность воды при различных температурах — таблица

t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл
999,8 0,9998 62 982,1 0,9821 200 864,7 0,8647
0,1 999,8 0,9998 64 981,1 0,9811 210 852,8 0,8528
2 999,9 0,9999 66 980 0,98 220 840,3 0,8403
4 1000 1 68 978,9 0,9789 230 827,3 0,8273
6 999,9 0,9999 70 977,8 0,9778 240 813,6 0,8136
8 999,9 0,9999 72 976,6 0,9766 250 799,2 0,7992
10 999,7 0,9997 74 975,4 0,9754 260 783,9 0,7839
12 999,5 0,9995 76 974,2 0,9742 270 767,8 0,7678
14 999,2 0,9992 78 973 0,973 280 750,5 0,7505
16 999 0,999 80 971,8 0,9718 290 732,1 0,7321
18 998,6 0,9986 82 970,5 0,9705 300 712,2 0,7122
20 998,2 0,9982 84 969,3 0,9693 305 701,7 0,7017
22 997,8 0,9978 86 967,8 0,9678 310 690,6 0,6906
24 997,3 0,9973 88 966,6 0,9666 315 679,1 0,6791
26 996,8 0,9968 90 965,3 0,9653 320 666,9 0,6669
28 996,2 0,9962 92 963,9 0,9639 325 654,1 0,6541
30 995,7 0,9957 94 962,6 0,9626 330 640,5 0,6405
32 995 0,995 96 961,2 0,9612 335 625,9 0,6259
34 994,4 0,9944 98 959,8 0,9598 340 610,1 0,6101
36 993,7 0,9937 100 958,4 0,9584 345 593,2 0,5932
38 993 0,993 105 954,5 0,9545 350 574,5 0,5745
40 992,2 0,9922 110 950,7 0,9507 355 553,3 0,5533
42 991,4 0,9914 115 946,8 0,9468 360 528,3 0,5283
44 990,6 0,9906 120 942,9 0,9429 362 516,6 0,5166
46 989,8 0,9898 125 938,8 0,9388 364 503,5 0,5035
48 988,9 0,9889 130 934,6 0,9346 366 488,5 0,4885
50 988 0,988 140 925,8 0,9258 368 470,6 0,4706
52 987,1 0,9871 150 916,8 0,9168 370 448,4 0,4484
54 986,2 0,9862 160 907,3 0,9073 371 435,2 0,4352
56 985,2 0,9852 170 897,3 0,8973 372 418,1 0,4181
58 984,2 0,9842 180 886,9 0,8869 373 396,2 0,3962
60 983,2 0,9832 190 876 0,876 374,12 317,8 0,3178

Следует отметить, что при увеличении температуры воды (выше 4°С) ее плотность уменьшается. Например, по данным таблицы, плотность воды при температуре 20°С равна 998,2 кг/м3, а при ее нагревании до 90°С, величина плотности снижается до значения 965,3 кг/м3. Удельная масса воды при нормальных условиях значительно отличается от ее плотности при высоких температурах. Средняя плотность воды, находящейся при температуре 200…370°С намного меньше ее плотности в обычном температурном диапазоне от 0 до 100°С.

Смена агрегатного состояния воды приводит к существенному изменению ее плотности. Так, величина плотности льда при 0°С имеет значение 916…920 кг/м3, а плотность водяного пара составляет величину в сотые доли килограмма на кубический метр. Следует отметить, что значение плотности воды почти в 1000 раз больше плотности воздуха при нормальных условиях.

Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.

Плотность воды

Весьма общераспространенным и часто встречавшимся в повседневной жизнедеятельности жидкостным веществом считается вода. Рассматривая главные параметры плотности и вязкости данного вещества, получаем плотность в естественных условиях равной 1000 килограмм на метр кубический. Данная величина используется в дистиллированной воде. Для морской воды величина плотности немного больше, и составляет 1030 килограмм на метр кубический. Данное значение не представляться конечным и очень тесно взаимосвязано с температурным показателем. Совершенные данные возможно фиксировать при температуре примерно +4°C.

Не нашли что искали?

Просто напиши и мы поможем

При выполнении расчётов для кипячёной воды с температурой +100°C, плотность очень значительно уменьшится и будет равна 958 килограмм на метр кубический. Экспериментально доказано, что при выполнении нагревания различных жидкостных веществ, плотность данных веществ становиться значительно меньше. Плотность воды является существенно приближённой к некоторым популярным продуктам питания. Плотность воды сравнима с винными изделиями, уксусными растворами и некоторыми молочными изделиями.

Часть продуктов питания обладают большими значениями плотности, чем вода. Но большое количество продовольственных и непродовольственных изделий, а также напитков, значительно уступающих традиционной воде. В числе которых находятся спирты и нефтяные продукты, включительно мазуты и бензиновые смеси. Для расчётов плотность определённых газообразных веществ применяются формулы состояния идеальных газов. Данные расчёты требуются в ситуациях, когда функционирование конкретных газов значительно различается с функционированием идеальных газов и явления сжижения не наблюдается.

Объём газообразного вещества обыкновенно находится в зависимости от величин давления и температурных показателей. Разница давлений, которая создаёт значительные преобразования плотности газообразных веществ, появляется во время передвижения на высоких скоростях. Обыкновенно несжимаемые газообразные вещества выражаются на скоростях, превышающих 100 м/сек. Высчитывается отношение скорости передвижения жидкостного вещества со скоростью звука. Данное вычисление разрешает сопоставлять большое количество параметров при свидетельствовании плотности любого вещества.

Значение термина «удельный»

Можно говорить о двух толкованиях, физическом и статистическом:

  • В физике так называют величину, измеренную в единице чего-либо. Для примера возьмем комнату, и подсчитаем в ней количество водяного пара. Получив величину, А граммов, мы сможем сказать, что влажность здесь составляет, А граммов водяного пара на целую комнату. Зная общее количество воздуха в помещении (Б кг), мы можем найти, сколько воды содержится в одном килограмме воздуха, узнав его удельную влажность. В одном килограмме воздуха комнаты содержится А/Б г/кг водяного пара. Таким образом, синонимом термина выступает слово относительный.
  • В статистических науках так называют частный показатель, взятый относительно некого целого. Для примера возьмем годовой бюджет страны, составляющий 500 млн, и вычислим долю расходов на спорт. Предположим, на спорт выделен 1 млн рублей — это 0,2% от всех планируемых трат. Не самая весомая статья бюджета.

Как рассчитать удельный вес металлов

Как определить УВ — этот вопрос часто встает у специалистов занятых в тяжелой промышленности. Эта процедура необходима для того, что бы определить именно те материалы, которые будет отличаться друг от друга улучшенными характеристиками.

Одна из ключевых особенностей металлических сплавов заключается в том, какой металл является основой сплава. То есть железо, магний или латунь, имеющие один объем будут иметь разную массу.

Плотность материала, которая рассчитывается на основании заданной формулы имеет прямое отношение к рассматриваемому вопросу. Как уже отмечено, УВ – это соотношение веса тела к его объему, надо помнить, что эта величина может быть определена как силу тяжести и объема определенного вещества.

Для металлов УВ и плотность определяют в той же пропорции. Допустимо использовать еще одну формулу, которая позволяет рассчитать УВ. Она выглядит следующим так УВ (плотность) равна отношению веса и массы с учетом g, постоянной величины. Можно сказать, что УВ металла может, носит название веса единицы объема. Дабы определить УВ необходимо массу сухого материала поделить на его объем. По факту, эта формула может быть использована для получения веса металла.

УВ металлов измеряют в условиях квалифицированных лабораторий. В практическом виде этот термин редко применяют. Значительно чаще, применяют понятие легкие и тяжелые металлы, к легким относят металлы с малым удельным весом, соответственно к тяжелым относят металлы с большим удельным весом.