Диэлектрические свойства воды и льда

Оглавление

Помещаем в постоянное поле

Теперь давайте немного отойдем от того, какие вещества могут быть диэлектриками и какие не могут ими быть, тем более что мы уже достаточно хорошо разобрались в этом вопросе.

Давайте попробуем сейчас ответить на такой интересный вопрос: что же будет, если диэлектрик поместить в постоянное электрическое поле? Сначала давайте дадим краткий ответ, а потом уже разберемся в этом вопросе более подробно. Так вот, если поместить диэлектрик в электрическое поле, то заряды диэлектрика, из которых он состоит будут под воздействием некоторых сил, которые будут:

  • смещать связанные заряды (это только электроны и ионы)
  • накладывать на беспорядочное движение тепла поля, которое будет это движение упорядочивать (положительные заряды будут идти в одну сторону с полем, а отрицательные — в обратную)

Что будет давать упорядоченное перемещение

При упорядочивании зарядов диэлектрика есть целых два варианта развития событий:

  • новое равновесное состояние с другим распределением зарядов, причем движение сразу прекращается при достижении равновесия
  • пока поле будет действовать, упорядочивание может длится, пока в нем еще останутся свободные электроны или свободные ионы, о которых мы поговорили выше

Преимущества и недостатки самодельной жидкости

Процесс дистилляции считается чуть ли не единственным способом эффективного очищения воды, независимо от ее происхождения. В отличие от других фильтрующих систем здесь не играет роли состав воды, а на результат не влияют основные параметры перегонки: давление, температура.


Такая вода имеет следующие полезные свойства при употреблении внутрь:

  • помогает бороться с лишним весом;
  • очищает почки и печень от солевых отложений;
  • восстанавливает работу почек;
  • повышает иммунитет;
  • не вызывает аллергии;
  • снимает интоксикацию организма.

Но регулярное питье дистиллированной воды может принести вред здоровью. Это обусловлено тем, что в большом количестве она способна нарушить водно-солевой обмен, гормональный фон и привести к стоматологическим патологиям из-за нехватки минералов.

Кроме этого, дистиллированная вода не особо приятная на вкус и вызывает чувство жажды.

Электропроводность

До сих пор идут дискуссии насчет того, обладает ли электропроводностью чистая вода.Она способна проводить ток, но очень плохо. Электропроводность дистиллята объясняется тем, что молекулы H 2 O частично распадаются на ионы H+ и OH-. Электрочастицы передвигаются с помощью позитивно заряженных ионов водорода, которые способны перемещаться в толще воды.

От чего зависит электропроводность жидкости

Электропроводность H 2 O зависит от таких факторов, как:

  • наличие и концентрация ионных примесей (минерализация);
  • природа ионов;
  • температура жидкости;
  • вязкость воды.

Первые два фактора являются определяющими. Поэтому вычислив значение электропроводности жидкости, мы сможем судить о степени ее минерализации.

В природе не существует чистой воды. Даже родниковая представляет собой некий раствор солей, металлов и других электролитных примесей. Это прежде всего ионы Na+, K+, Ca 2 +, Cl-, SO 4 2-, HCO 3 -. Также в ее состав могут входить слабые электролиты, которые неспособны сильно изменить свойство проводить ток. К ним относятся Fe 3 +, Fe 2 +, Mn 2 +, Al 3 +, NO 3 -, HPO 4 – и другие. Сильное влияние на электропроводность они способны оказать только в случае высокой концентрации, как, например, это бывает в сточных водах с отходами производства. Интересно, что наличие примесей в воде, которая находится в состоянии льда, не влияет на ее способность проводить электричество.

Электропроводность морской воды

Морская вода способна лучше проводить электрический ток, чем пресная. Это объясняется наличием в ней растворенной соли NaCl, которая является хорошим электролитом. Механизм увеличения проводимости можно описать следующим образом:

  1. Хлорид натрия при растворении в воде распадается на ионы Na+ и Cl-, которые имеют разные заряды.
  2. Ионы Na+притягивают электроны, так как имеют противоположный заряд.
  3. Движение ионов натрия в толще воды приводит к перемещению электронов, что, в свою очередь, ведет к возникновению электрического тока.

Таким образом, электропроводность воды определяется наличием в ней солей и других примесей. Чем их меньше, тем ниже способность проводить электрический ток. У дистиллированной воды она практически нулевая.

Измерение электропроводности

Измерение электропроводности растворов осуществляется с помощью кондуктометров. Это специальные приборы, принцип действия которых основан на анализе соотношения электропроводности и концентрации примесей-электролитов. На сегодняшний день существует множество моделей, которые способны измерять электропроводность не только высококонцентрированных растворов, но и чистой дистиллированной воды.

Лучшие проводники электрического тока

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: носители свободных электрических зарядов в металлах.

В этом листке мы приступаем к подробному изучению того, как осуществляется прохождение электрического тока в различных проводящих средах — твёрдых телах, жидкостях и газах.

Напомним, что необходимым условием возникновения тока является наличие в среде достаточно большого количества свободных зарядов, которые могут начать упорядоченное движение под действием электрического поля. Такие среды как раз и называются проводниками электрического тока.

Наиболее широко распространены металлические проводники. Поэтому начинаем мы с вопросов распространения электрического тока в металлах.

Мы много раз говорили о свободных электронах, которые являются носителями свободных зарядов в металлах. Вам хорошо известно, что электрический ток в металлическом проводнике образуется в результате направленного движения свободных электронов.

Что такое проводники и диэлектрики

Проводники — вещества, со свободными электрическими зарядами, способными направленно перемещаться под воздействием внешнего электрического поля. Такими особенностями обладают:

  • металлы и их расплавы;
  • природный углерод (каменный уголь, графит);
  • электролиты — растворы солей, кислот и щелочей;
  • ионизированный газ (плазма).

Главное свойство материалов: свободные заряды — электроны у твёрдых проводников и ионы у растворов и расплавов, перемещаясь по всему объёму проводника проводят электрический ток. Под воздействием приложенного к проводнику электрического напряжения создаётся ток проводимости. Удельное сопротивление и электропроводимость — основные показатели материала.

Watch this video on YouTube

Свойства диэлектрических материалов противоположны проводникам электричества. Диэлектрики (изоляторы) — состоят из нейтральных атомов и молекул. Они не имеют способности к перемещению заряженных частиц под воздействием электрического поля. Диэлектрики в электрическом поле накапливают на поверхности нескомпенсированные заряды. Они образуют электрическое поле, направленное внутрь изолятора, происходит поляризация диэлектрика.

В результате поляризации, заряды на поверхности диэлектрика стремятся уменьшить электрическое поле. Это свойство электроизоляционных материалов называется диэлектрической проницаемостью диэлектрика.

Интересные факты о слюде

Раньше, несколько веков назад, когда не умели делать тонкие оконные стекла, светопрозрачные конструкции делали расщепляя природную слюду. Так как большие куски слюды без дефектов были редкостью, то и окна принимали причудливую форму.

Слюда вместо стекла в оконной раме. Из экспозиции красноярского краеведческого музея.

Слюда — достаточно мягкий материал, слюдяная пластинка (как и большинство материалов на её базе) легко режется ножницами. В силу своей слоистой природы, склеивание слюды — занятие малонадежное, сила сцепления меж слоев невысокая, поэтому при производстве детали из слюды скрепляют механически — заклепки, люверсы, винты и т. д.

Электрические соединения с нагревательным элементом выполнены полыми заклепками.

пьезоэлектрические свойства древесины

На поверхности некоторых диэлектриков под действием механических напряжений появляются электрические заряды. Это явление, связанное с поляризацией диэлектрика, носит название прямого пьезоэлектрического эффекта. Пьезоэлектрические свойства были вначале обнаружены у кристаллов кварца, турмалина, сегнетовой соли и др. Эти материалы обладают также обратным пьезоэлектрическим эффектом, заключающимся в том, что размеры их изменяются под действием электрического поля. Пластинки из этих кристаллов находят широкое применение в качестве излучателей и приемников в ультразвуковой технике.

Эти явления обнаруживаются не только у монокристаллов, но и у целого ряда других анизотропных твердых материалов, названных пьезоэлектрическими текстурами. Пьезоэлектрические свойства были обнаружены также в древесине. Было установлено, что основной носитель пьезоэлектрических свойств в древесине — ее ориентированный компонент — целлюлоза. Интенсивность поляризации древесины пропорциональна величине механических напряжений от приложенных внешних усилий; коэффициент пропорциональности называется пьезоэлектрическим модулем. Количественное изучение пьезоэлектрического эффекта, таким образом, сводится к определению значений пьезоэлектрических модулей. В связи с анизотропией механических и пьезоэлектрических свойств древесины указанные показатели зависят от направления механических усилий и вектора поляризации.

Наибольший пьезоэлектрический эффект наблюдается при сжимающей и растягивающей нагрузках под углом 45° к волокнам. Механические напряжения, направленные строго вдоль или поперек волокон, не вызывают в древесине пьезоэлектрического эффекта. В табл. приведены значения пьезоэлектрических модулей для некоторых пород. Максимальный пьезоэлектрический эффект наблюдается в сухой древесине, с увеличением влажности он уменьшается, а затем и совсем исчезает. Так, уже при влажности 6-8% величина пьезоэлектрического эффекта очень мала. С повышением температуры до 100° С величина пьезоэлектрического модуля увеличивается. При малой упругой деформации (высоком модуле упругости) древесины пьезоэлектрический модуль уменьшается. Пьезоэлектрический модуль зависит также от ряда других факторов; однако наибольшее влияние на его величину оказывает ориентация целлюлозной составляющей древесины.

Полезна или вредна?

Мнение о плюсах и минусах употребления дистиллята разделяется. Одни утверждают о пользе, подтверждая это на собственном организме. Другие уверены в обратном, называя её «мёртвой водой».

Фактически дистиллят является чистейшей водой на Земле.

Здесь нет минералов, полезных веществ, но и вредные шлаки и отравляющие компоненты тоже отсутствуют.

Ошибочно может показаться, что её употребление полезно для организма, но это не так.

Отрицательная сторона регулярного употребления дистиллированной воды в том, что организм перестаёт получать нужное количество минералов и веществ, необходимых для нормального функционирования.

Например, недостаток свободных молекул кислорода, снижает скорость процессов химического окисления соединений. В результате нарушается концентрация клеточного сока, приводящая к сбоям в ритмах жизнедеятельности микроклеток.

Из этого складывается самый распространённый миф о вреде дистиллированной воды. По его версии, регулярное употребление:

  • «вымывает» из организма полезные вещества,
  • способствует разрушению зубов,
  • становится причиной сбоя в работе внутренних органов.

На самом деле это происходит из-за недостатка минералов и других жизненно необходимых элементов, пополняемых обычной питьевой водой.

Употреблять дистиллят не рекомендуется по следующим причинам:

  • Отсутствие полезных веществ.
  • Отсутствие свободных молекул кислорода.
  • При регулярном потреблении нарушается клеточный состав.
  • Не соответствует нужным показателям водородного баланса.

Важно! Употребление дистиллированной воды разрешается при условии восполнения утраченных компонентов другими продуктами. Фактически выполнить это условие современному человеку (при его ритме жизни) практически невозможно.

При похудении

Самой распространённой методикой считается один день в неделю полностью отказываться от пищи, и пить только дистиллят. Объём за сутки находится в диапазоне двух-трёх литров.

Вариантов таких диет много, единственное, что женщина должна сделать обязательно – проконсультироваться с терапевтом.

Чаще всего тот посоветует пройти полное обследование организма и только после этого выдаст заключение: пропишет полноценный, щадящий курс или выставит противопоказания.

Важно! Женщины, самостоятельно «садящиеся» на такие диеты, часто страдают головокружением, подают в голодные обмороки, жалуются на проблемы с зубами. За несколько дней может развиться критическое нарушение водно-электролитного равновесия.

Когда категорически запрещено?

Если для взрослого человека литр выпитой дистиллированной воды вреда не принесёт, то отдельным группам граждан употреблять запрещается.

К ним относятся:

  • Беременные женщины, плод которых получает пищу только за счёт организма матери.
  • Несовершеннолетние, чей растущий организм ещё не сформировался и требует обеспечения полноценным составом полезных веществ.
  • Спортсмены и лица, ведущие активный образ жизни.
  • Страдающие хроническими, инфекционными и другими заболеваниями.

Справка! Запрет для этих людей обоснован отсутствием микроэлементов и полезных веществ в дистиллированной воде.

Дистиллированная вода

Если воду очистить от всех примесей, то она перестанет пропускать ток. Такая вода называется дистиллированной. Ее получают в процессе перегонки в аппаратах, называемых дистилляторами, методом обратного осмоса и некоторыми другими способами. Многие пытливые умы интересует, проводит ли ток беспримесная дистиллированная вода?

Из-за присутствия углекислого газа такая жидкость имеет слабую кислотность, но это на электропроводность не влияет. Чтобы избавиться от углекислого газа, дистиллированную воду кипятят 30 минут, затем герметично закрывают.

Итак, отвечая на вопрос, какая вода не может проводить электрический ток, следует отвечать – дистиллированная, высокоочищенная.

Диэлектрик в постоянном электрическом поле

При помещении диэлектрика в постоянное электрическое поле заряды, из которых он построен, оказываются подверженными действию сил обусловливающих:

  1. смещение связанных зарядов (электроны, ионы),
  2. наложение на беспорядочное тепловое движение некоторого упорядоченного, состоящего в перемещении положительных зарядов в направлении поля, отрицательных зарядов — в обратном направлении.

Это упорядоченное перемещение может:

  • а) привести к новому равновесному состоянию с несколько измененным распределением зарядов, по достижению которого упорядоченное движение прекращается (вращение дипольных молекул, перемещение полусвязанных ионов);
  • б) продолжаться непрерывно, пока в нем существует в электрическое поле (свободные ионы и электроны).

Поляризации диэлектрика

Эти процессы будут развиваться с разной скоростью. Смещение связанных зарядов потребует для своего завершения лишь весьма малого времени; значительно медленнее протекают процессы. Смещение зарядов в электрическом поле, указанное, вызывает образование обратного поля, которое ослабляет приложенное внешнее поле. Это явление носит название поляризации диэлектрика. Мерой ослабления поля внутри него служит электрическая проницаемость (постоянная). Поскольку процесс поляризации не протекает мгновенно, а требует для завершения некоторого конечного промежутка времени, постольку связанные с явлением поляризации величины, в частности диэлектрическая проницаемость, не являются константами, а переменными величинами, зависящими от времени. При повышении температуры увеличивается интенсивность теплового движения, и переход в упорядоченное состояние затрудняется. Вследствие этого при наличии процессов, на поляризацию диэлектрика и его диэлектрическую проницаемость должна влиять и температуpa, причем при повышении температуры диэлектрическая проницаемость должна убывать.

Пробой диэлектрика

Помните мы в данной статье уже говорили о том, что у каждого диэлектрика есть свой предел и что нельзя однозначно называть вещество диэлектриком и нужно рассматривать его в динамике. Так вот, давайте вернемся к этой теме и немного углубимся в нее. Знаете ли вы, что происходит при поляризации?

Дело в том, что при этом явлении начинается такое состояние, называемое стационарным или же квазистанционырным, если воздействие напряжения извне переменное. Такое состояние отличается от обычного тем, что значения поляризации могут очень долго держаться на одном уровне. Вместе с ними стабилизируется и электропроводность.

Если сразу же начать увеличивать напряженность в таком поле, то можно будет очень точно определить тот предел, при котором эта самая стабильность будет резко нарушаться. Сразу же увеличиться ток, электропроводность, а это уже прямой путь из диэлектрика в проводники. Действительно, после этого вещество уже нельзя охарактеризовать, как диэлектрик. Такой процесс перехода диэлектрика в проводники называется пробоем диэлектрика.

Когда мы поняли, что такое пробой, давайте теперь поймем, как можно легко определить, в какой момент пробой диэлектрика происходит

Как мы можем понять, временной порог пробоя может зависеть от температуры, агрегатного состояния вещества и многих других факторов, тут важно другое. Давайте разберем основные случаи пробоя, их всего лишь два, поэтому не пугайтесь:

  • тепловые явления, при которых возрастающая электропроводность обуславливается тем, что диэлектрик очень быстро нагревается, из-за чего стационарным тепловое состояние уже быть не может
  • электрические явления, которые происходят из-за увеличения количества свободных электронов и ионов. Это тоже происходит в двух случаях. Либо появление свободных зарядов обусловлено сбитием их другими движущимися зарядами, либо сбитием полем.

Вода

Это абсолютно контринтуитивно, но этот пункт включен сюда, чтобы взорвать вам мозг. Вода не проводит ток! Везде учат, что вода хороший проводник электричества, и обычно это так. Но очень чистая деионизированная вода, которая не содержит ничего кроме H2O ток не проводит — её удельное сопротивление 18 МОм*см. Та вода, которая проводит ток — недостаточно чистая. Измерение электрической проводимости — довольно простой способ оценки качества и чистоты воды. (Актуально для постоянного тока и для переменного тока низкой частоты.)

Имея сильно полярные и подвижные молекулы, вода не только изолятор, но и имеет очень высокую диэлектрическую проницаемость — около 81 при комнатной температуре (у большинства обычных диэлектриков она не превышает 20–30). На этом основаны емкостные измерители влажности: небольшое количество воды между обкладками конденсатора резко повышает его емкость.

К сожалению, вода — прекрасный растворитель, а растворенные в ней вещества обычно образуют электролиты. Стоит постоять дистиллированной воде на воздухе, и она растворяет в себе углекислый газ, образуя электролит — слабый раствор угольной кислоты. Вода способна растворять и стенки сосуда, в котором находится. Малейшая примесь солей, особенно хлоридов и сульфидов натрия, калия, кальция, резко повышает проводимость воды. Поэтому на практике в роли диэлектрика вода никуда не годится.

Бутылка деионизированной воды из радиомагазина. Печатные платы электронных устройств стоит промывать только дистилированной или деионизированной водой, иначе соли, содержащиеся в воде, могут наделать бед.

Поговорим о поляризации

Следующий важный термин, о котором пришло время узнать — это поляризация диэлектриков. Дело в том, что процессы смещения зарядов диэлектрика протекают с разной скоростью. Как мы уже сказали ранее, для связанных зарядов время смещения гораздо меньше, а вот другие процессы протекают очень медленно.

При смещении зарядов диэлектрика образуется еще одно поле. Оно как раз и делает главное (внешнее) поле слабее. Как раз явление образования нового поля и называется поляризацией диэлектрика. Теперь давайте углубимся в этот процесс, ведь тут очень много интересных подробностей.

Для начала давайте поймем, почему новое поле появляется именно при смещении. Тут как раз все просто, ведь теперь из беспорядочного состояния диэлектрик становится более упорядоченным — отрицательные заряды теперь расположены левее своих положительных зарядов. Как раз это и создает новое поле.

Проницаемость диэлектрика

А как же измерить, насколько внутреннее поле ослабевает внешнее? Что-ж, здесь все очень просто. Такая мера называется электрическая проницаемость или проницаемость диэлектрика (наверняка вы уже слышали такой термин). Обычно говорят, что проницаемость диэлектрика это постоянная, но на самом деле в связи с тем, что поляризация протекает довольно долго, будем говорить, что эта величина зависит от времени действия внешнего поля.

Как на проницаемость диэлектрика влияет температура?

Но только ли время влияет на электрическую проницаемость. Выясняется, что не только. Оказывается, если увеличить температура, то вместе с этим еще и увеличивается интенсивность теплового движения, а это, как вы понимаете, напрямую влияет на проницаемость диэлектрика. Почему? Все просто: переход в устойчивое состояние становится более сложным, а поэтому диэлектрическая проницаемость с увеличением температуры становится все меньше.

Проводит электричество или нет?

Теоретически дистиллированная вода не относится к числу веществ, проводящих электроток. В идеально чистой жидкой среде отсутствуют минеральные соли и дополнительные примеси.

В ней практически нет свободных ионов. В такой среде отсутствуют подходящие условия для их взаимодействия.

На практике из водного раствора не удается полностью удалить все соли и примеси. Их концентрация в ней существенно ниже, чем в обычной воде.

Но такая очищенная среда все равно содержит в себе некоторое количество веществ, которые могут передавать электричество. Такая жидкая среда может быть слабым проводником.

Примеры применения

Корпуса микросхем, обычно ответственного применения.

Корпуса электровакуумных приборов.}

Корпус вакуумной колбы магнетрона изготовлен из меди и алюмооксидной керамики. Керамика видна на фото, фиолетовый поясок между колпачком и корпусом.

Алюмооксидная керамика очень твёрдая, обрабатывается как и многие керамики алмазным инструментом. Обломок керамического корпуса микросхемы — отличное орудие для написания посланий на лобовом стекле автомобиля, оставляет четкие ровные царапины не хуже стеклореза.

Данный вид керамики плотный, не впитывает влагу, удерживает вакуум, не трескается при резком перепаде температур и тепловом ударе. При этом сцепление металлических пленок с поверхностью высокое, позволяет делать на керамике дорожки, герметично приваривать металлические детали.

Внешне очень похожа бериллиевая керамика — она превосходит алюмооксидную керамику по предельной рабочей температуре, по теплопроводности (сопоставимую с металлами!), но в силу дороговизны и токсичности пыли из нее применяется редко.

Теплопроводность

Теплопроводность – это способность физического вещества проводить тепло от нагретых частей к более холодным. Вода, как и другие вещества, обладает таким свойством. Передача тепла происходит либо от молекулы к молекуле H2O, что представляет собой молекулярный тип теплопроводности, либо при перемещении потоков жидкости – турбулентный тип.

Теплопроводность воды в несколько раз выше, чем у других жидких веществ, за исключением расплавленных металлов – у них этот показатель еще более высокий.

Почему вода в бассейне кажется нам холодной

Теплопроводность воды в несколько десятков раз превышает это значение у воздуха. Когда человек погружается в воду или же просто обливается ею, теплопотеря возрастает, поэтому ему становится гораздо холоднее, чем на воздухе такой же температуры. Это видно на примерах, приведенных в таблице:

Температура Ощущения на воздухе Ощущения в воде
30-35 °C слишком тепло нейтрально
20-23 °C нейтрально прохладно
12-16 °C прохладно очень холодно

Интересные факты о слюде

Раньше, несколько веков назад, когда не умели делать тонкие оконные стекла, светопрозрачные конструкции делали расщепляя природную слюду. Так как большие куски слюды без дефектов были редкостью, то и окна принимали причудливую форму.

Слюда вместо стекла в оконной раме. Из экспозиции красноярского краеведческого музея.

Слюда — достаточно мягкий материал, слюдяная пластинка (как и большинство материалов на её базе) легко режется ножницами. В силу своей слоистой природы, склеивание слюды — занятие малонадежное, сила сцепления меж слоев невысокая, поэтому при производстве детали из слюды скрепляют механически — заклепки, люверсы, винты и т. д.

Электрические соединения с нагревательным элементом выполнены полыми заклепками.

Асбест

Уникальный, непревзойденный класс материалов. Природное волокно, «горный лен». Является огнестойким диэлектриком. Использовалось во множестве применений, начиная от армирующей добавки в полимеры, заканчивая изоляцией нагревательных приборов. Выпускается в виде листов (асбестокартон), нити, пряжи. Чаще всего используется именно как теплоизолятор, как диэлектрик только в установках невысокого (до 1 кВ) напряжения.

Широко применялся в строительстве. Шифер — это цемент, упрочненный волокнами асбеста, практически вечный материал. Высоко ценилась его дешевизна и огнестойкость. Но есть одно но:

Асбест — канцероген. Причем канцероген 1-го класса (от МАИР), наравне с мышьяком, формальдегидом. (Степень опасности различных видов асбеста — вопрос дискусионный, и нет единодушного мнения на этот счет.) Длительное наблюдение показало, что изделия из асбеста пылят волокном, которое при вдыхании может провоцировать заболевание легких — асбестоз. Прежде всего в группе риска работники предприятий по добыче и переработке асбеста. В меньшей степени подвержены опасности те, кто ежедневно эксплуатируют изделия из асбеста. В остальных случаях нет причин для паники, если у вас на даче крыша покрыта шифером, а печь в бане прикрыта асбестокартоном, то вы скорее всего умрете не от асбеста, а от заболеваний сердечно-сосудистой системы (статистика смертности).

{Кусок асбестокартона и старый грязный асбестовый шнур. Асбест на ощупь очень мягкий и не колется как стеклоткани.

Асбест и изделия из асбеста до сих пор широко производятся, поскольку в некоторых задачах заменить асбест без потери свойств попросту нечем (или слишком дорого). Асбест отличный материал при конструировании экспериментальных устройств, содержащих нагреватели или раскаленные части. На куске асбестокартона можно спокойно газовой горелкой греть детали до 1000°С, при этом он сохранит свою форму. Асбестовая нить удобна для стягивания нихрома в нагревателях.

Магнитный усилитель и токовый шунт от блока питания 50-ВУК-120-1 на плате из материала на базе асбеста.

Дистилляция воды в домашних условиях

Метод замораживания

Очищение методом замораживания выполняется так:

  1. берется бутылка из пластика (стеклянная банка) необходимого объема;
  2. тара заполняется водой (отстаивать нет необходимости, просто наливайте обычную жидкость);
  3. бутылка/банка помещается в морозилку холодильника на 12 часов;
  4. не замороженные жидкие остатки выливаются, в них сосредоточены соли и химикаты;
  5. отставляем тару – пусть лед самостоятельно размораживается. Некоторые предпочитают разогревать лед (должна быть комнатная температура во время разморозки), если решите так сделать. Талая жидкость – дистиллятор.

Полученную методом замораживания дистиллированную воду рекомендуется можно хранить долго, но желательно постоянно пополнять запасы. Тем более процесс заморозки и разморозки быстрый. Зачем хранить, если можно приготовить свежую. Если у Вас вместительная морозильная камера, это еще лучше. Чем больше морозилка, тем более можно в нее поместить бутылок.

Метод замораживания самый легкий. Особенно в холодный сезон, когда на улице минусовая погода. Чтобы приготовить дистиллятор, достаточно поставить тару на балкон или улице.

Сбор дождевой воды

Чудесное природное явление под названием дождь – возможность самоочищения. Вы когда-нибудь пили дождевую воду? Мыли ею волосы? Если нет, рекомендуем, Вы удивитесь, насколько вкусная и мягкая она, а волосы после мыть шелковистые и мягкие.

Вода, которая испарилась под влиянием ультрафиолета, собирается в облаках. Из облаков она выпадает вновь в виде такого природного явления, как дождь, уже очищенный от вредных примесей после интеграции в парообразное состояние и обратно. Как получить дождевой кристально чистый дистиллятор? Да просто подставить под дождевые капли емкость. А если на улице лежит снежный покров, можете поместить его в кастрюлю и поставить в теплое место.