Плотность воды при 4°c → плотность железа , плотности различных веществ

Оглавление

Удельный объем и удельный вес

Если известны конкретные объемы двух веществ, эта информация может использоваться для расчета и сравнения их плотностей.

Сравнение плотности дает удельные значения плотности. Одно из применений удельного веса состоит в том, чтобы предсказать, будет ли вещество плавать или тонуть при помещении на другое вещество.

Например, если вещество А имеет удельный объем 0,358 см. 3 / г, а вещество B имеет удельный объем 0,374 см. 3 / г, принимая обратное значение каждого значения даст плотность. Таким образом, плотность А составляет 2,79 г / см. 3 и плотность B составляет 2,67 г / см. 3 , Удельный вес, сравнивая плотность A с B, составляет 1,04 или удельный вес B по сравнению с A составляет 0,95. A более плотный, чем B, поэтому A погрузится в B или B будет плавать на A.

Плотность воды в зависимости от температуры

Принято считать, что плотность воды равна 1000 кг/м3, 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?

Максимальная плотность воды достигается при температуре 3,8…4,2°С. В этих условиях точное значение плотности воды составляет 999,972 кг/м3. Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.

Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м3 и г/мл.

В таблице приведены значения плотности воды в кг/м3 и в г/мл (г/см3), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м3 или 0,9971 г/мл.

Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м3. Плотность соленой воды и водных растворов солей можно узнать в этой таблице.

Плотность воды при различных температурах — таблица
t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл
999,8 0,9998 62 982,1 0,9821 200 864,7 0,8647
0,1 999,8 0,9998 64 981,1 0,9811 210 852,8 0,8528
2 999,9 0,9999 66 980 0,98 220 840,3 0,8403
4 1000 1 68 978,9 0,9789 230 827,3 0,8273
6 999,9 0,9999 70 977,8 0,9778 240 813,6 0,8136
8 999,9 0,9999 72 976,6 0,9766 250 799,2 0,7992
10 999,7 0,9997 74 975,4 0,9754 260 783,9 0,7839
12 999,5 0,9995 76 974,2 0,9742 270 767,8 0,7678
14 999,2 0,9992 78 973 0,973 280 750,5 0,7505
16 999 0,999 80 971,8 0,9718 290 732,1 0,7321
18 998,6 0,9986 82 970,5 0,9705 300 712,2 0,7122
20 998,2 0,9982 84 969,3 0,9693 305 701,7 0,7017
22 997,8 0,9978 86 967,8 0,9678 310 690,6 0,6906
24 997,3 0,9973 88 966,6 0,9666 315 679,1 0,6791
26 996,8 0,9968 90 965,3 0,9653 320 666,9 0,6669
28 996,2 0,9962 92 963,9 0,9639 325 654,1 0,6541
30 995,7 0,9957 94 962,6 0,9626 330 640,5 0,6405
32 995 0,995 96 961,2 0,9612 335 625,9 0,6259
34 994,4 0,9944 98 959,8 0,9598 340 610,1 0,6101
36 993,7 0,9937 100 958,4 0,9584 345 593,2 0,5932
38 993 0,993 105 954,5 0,9545 350 574,5 0,5745
40 992,2 0,9922 110 950,7 0,9507 355 553,3 0,5533
42 991,4 0,9914 115 946,8 0,9468 360 528,3 0,5283
44 990,6 0,9906 120 942,9 0,9429 362 516,6 0,5166
46 989,8 0,9898 125 938,8 0,9388 364 503,5 0,5035
48 988,9 0,9889 130 934,6 0,9346 366 488,5 0,4885
50 988 0,988 140 925,8 0,9258 368 470,6 0,4706
52 987,1 0,9871 150 916,8 0,9168 370 448,4 0,4484
54 986,2 0,9862 160 907,3 0,9073 371 435,2 0,4352
56 985,2 0,9852 170 897,3 0,8973 372 418,1 0,4181
58 984,2 0,9842 180 886,9 0,8869 373 396,2 0,3962
60 983,2 0,9832 190 876 0,876 374,12 317,8 0,3178

Следует отметить, что при увеличении температуры воды (выше 4°С) ее плотность уменьшается. Например, по данным таблицы, плотность воды при температуре 20°С равна 998,2 кг/м3, а при ее нагревании до 90°С, величина плотности снижается до значения 965,3 кг/м3. Удельная масса воды при нормальных условиях значительно отличается от ее плотности при высоких температурах. Средняя плотность воды, находящейся при температуре 200…370°С намного меньше ее плотности в обычном температурном диапазоне от 0 до 100°С.

Смена агрегатного состояния воды приводит к существенному изменению ее плотности. Так, величина плотности льда при 0°С имеет значение 916…920 кг/м3, а плотность водяного пара составляет величину в сотые доли килограмма на кубический метр. Следует отметить, что значение плотности воды почти в 1000 раз больше плотности воздуха при нормальных условиях.

Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.

Как называется величина обратная плотности

Удельный объём — Размерность LM−3 Единицы измерения СИ м³/кг СГС … ВикипедияУДЕЛЬНЫЙ ОБЪЁМ — (см. ОБЪЁМ УДЕЛЬНЫЙ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. УДЕЛЬНЫЙ ОБЪЁМ … Физическая энциклопедия

УДЕЛЬНЫЙ ОБЪЁМ — физ. величина (обозначение и), равная отношению объёма, занимаемого веществом, к его (см.). Для однородного вещества удельный объём величина, обратная (см.). В СИ удельный объём выражается в м3 кг … Большая политехническая энциклопедия

удельный объём — — Тематики электротехника, основные понятия EN specific volumesp vols.v … Справочник технического переводчика

удельный объём — savitasis tūris statusas T sritis fizika atitikmenys: angl. specific volume vok. spezifisches Volumen, n rus. удельный объём, m pranc. volume massique, m; volume spécifique, m … Fizikos terminų žodynas

УДЕЛЬНЫЙ ОБЪЁМ — объём, занимаемый единицей массы в ва; величина, обратная плотности. Единица СИ м3/кг … Естествознание. Энциклопедический словарь

удельный объём — объём, занимаемый единицей массы вещества; величина, обратная плотности. * * * УДЕЛЬНЫЙ ОБЪЕМ УДЕЛЬНЫЙ ОБЪЕМ, объем, занимаемый единицей массы вещества; величина, обратная плотности … Энциклопедический словарь

Удельный объём — см. Объём удельный … Большая советская энциклопедия

удельный объём насыщенного пара — — Тематики энергетика в целом EN saturated steam specific volumevg … Справочник технического переводчика

удельный объём насыщенной воды — — Тематики энергетика в целом EN saturated water specific volumeVf … Справочник технического переводчика

Источник

Теплофизические свойства воды на линии насыщения (100…370°С)

В таблице представлены теплофизические свойства воды H2O на линии насыщения в зависимости от температуры (в диапазоне от 100 до 370°С). Каждому значению температуры, при которой вода находится в состоянии насыщения, соответствует давление ее насыщенного пара. При этих параметрах жидкость и ее пар находятся в состоянии насыщения или термодинамического равновесия.

В таблице даны следующие теплофизические свойства воды в состоянии насыщенной жидкости:

  • давление насыщенного пара при указанной температуре p, Па;
  • плотность воды ρ, кг/м3;
  • удельная энтальпия воды h, кДж/кг;
  • удельная (массовая) теплоемкость Cp, кДж/(кг·град);
  • теплопроводность λ, Вт/(м·град);
  • температуропроводность a, м2/с;
  • вязкость динамическая μ, Па·с;
  • вязкость кинематическая ν, м2/с;
  • коэффициент теплового объемного расширения β, К-1;
  • коэффициент поверхностного натяжения σ, Н/м;
  • число Прандтля Pr.

Свойства воды на линии насыщения имеют зависимость от температуры. Ее влияние особенно сказывается на вязкости воды — динамическая вязкость H2O при повышении температуры значительно снижается. Если, при температуре 100°С значение этого свойства воды в состоянии насыщения равно 282,5·10-6 Па·с, то при температуре, равной, например 370°С, динамическая вязкость снижается до величины 56,9·10-6 Па·с.

Другие свойства воды такие, как плотность, теплопроводность, удельная теплоемкость, температуропроводность при росте ее температуры имеют тенденцию к снижению своих значений. Например, плотность воды уменьшается с 958,4 до 450,5 кг/м3 при нагревании со 100 до 370°С.

Теплопроводность воды в состоянии насыщения при увеличении температуры также снижается (в отличие от нормальных условий и температуре до 100°С, при которых имеет место ее рост в процессе нагрева). Снижение теплопроводности связано с увеличением как температуры, так и давления насыщенной жидкости.

Следует отметить, что удельная энтальпия воды в зависимости от температуры значительно увеличивается при нагревании, как до температуры кипения, так и выше.

Физические свойства воды при температуре от 0 до 100°С

В таблице представлены следующие физические свойства воды: плотность воды ρ, удельная энтальпия h, удельная теплоемкость Cp, теплопроводность воды λ, температуропроводность воды а, вязкость динамическая μ, вязкость кинематическая ν, коэффициент объемного теплового расширения β, коэффициент поверхностного натяжения σ, число Прандтля Pr. Физические свойства воды приведены в таблице при нормальном атмосферном давлении в интервале от 0 до 100°С.

Физические свойства воды существенно зависят от ее температуры. Наиболее сильно эта зависимость выражена у таких свойств, как удельная энтальпия и динамическая вязкость. При нагревании значение энтальпии воды значительно увеличивается, а вязкость существенно снижается. Другие физические свойства воды, например, коэффициент поверхностного натяжения, число Прандтля и плотность уменьшаются при росте ее температуры. К примеру, плотность воды при нормальных условиях (20°С) имеет значение 998,2 кг/м3, а при температуре кипения снижается до 958,4 кг/м3.

Такое свойство воды, как теплопроводность (или правильнее — коэффициент теплопроводности) при нагревании имеет тенденцию к увеличению. Теплопроводность воды при температуре кипения 100°С достигает значения 0,683 Вт/(м·град). Температуропроводность H2O также увеличивается при росте ее температуры.

Следует отметить нелинейное поведение кривой зависимости удельной теплоемкости этой жидкости от температуры. Ее значение снижается в интервале от 0 до 40°С, затем происходит постепенный рост теплоемкости до величины 4220 Дж/(кг·град) при 100°С. Физические свойства воды при атмосферном давлении — таблица

t, °С → 10 20 30 40 50 60 70 80 90 100
ρ, кг/м3 999,8 999,7 998,2 995,7 992,2 988 983,2 977,8 971,8 965,3 958,4
h, кДж/кг 42,04 83,91 125,7 167,5 209,3 251,1 293 335 377 419,1
Cp, Дж/(кг·град) 4217 4191 4183 4174 4174 4181 4182 4187 4195 4208 4220
λ, Вт/(м·град) 0,569 0,574 0,599 0,618 0,635 0,648 0,659 0,668 0,674 0,68 0,683
a·108, м2/с 13,2 13,7 14,3 14,9 15,3 15,7 16 16,3 16,6 16,8 16,9
μ·106, Па·с 1788 1306 1004 801,5 653,3 549,4 469,9 406,1 355,1 314,9 282,5
ν·106, м2/с 1,789 1,306 1,006 0,805 0,659 0,556 0,478 0,415 0,365 0,326 0,295
β·104, град-1 -0,63 0,7 1,82 3,21 3,87 4,49 5,11 5,7 6,32 6,95 7,52
σ·104, Н/м 756,4 741,6 726,9 712,2 696,5 676,9 662,2 643,5 625,9 607,2 588,6
Pr 13,5 9,52 7,02 5,42 4,31 3,54 2,93 2,55 2,21 1,95 1,75

Примечание: Температуропроводность в таблице дана в степени 108 , вязкость в степени 106 и т. д. для других свойств. Размерность физических свойств воды выражена в единицах .

Плотность — вода

Плотность воды уменьшается с увеличением температуры и возрастает с увеличением солености; обе эти величины с увеличением глубины уменьшаются. На глубинах 25 — 200 м имеется несколько уровней, где температура достаточно резко понижается с глубиной, компенсируя тем самым увеличение солености. На этих уровнях подводная лодка устойчива.

Плотность воды и воздуха при температуре опыта берется из таблиц.

Плотности воды ( 1 0 г / см3) и дивинила ( 0 62 г / см3) значительно отличаются между собой. Поэтому для создания большой поверхности соприкосновения между ними необходимо перемешивание. Без перемешивания смесь дивинила и воды быстро расслаивается на верхний, более легкий-дивинильный слой и нижний, более тяжелый-водный. Чем сильнее перемешивание, тем быстрее устанавливается равновесное содержание альдегида в дивиниле и воде.

Плотности воды ( 1 0 г / сж3) и бутадиена ( 0 62 г / см3) значительно различаются. Поэтому для создания большой поверхности соприкосновения между ними необходимо перемешивание. Без перемешивания смесь бутадиена и воды быстро расслаивается на верхний, более легкий — бутадиеновый слой и нижний, более тяжелый-водный. Чем сильнее перемешивание, тем быстрее устанавливается равновесное содержание альдегида в бутадиене и воде.

Плотность и удельные объемы воды.

Плотность воды определяют в тех случаях, когда происходит смешение вод с различными концентрациями растворенных веществ и когда эти различия могут оказывать влияние на режим течения и расход реагентов на установках очистки сточных вод

Важное значение имеет определение плотности шламов и илов.
 . Плотность воды при переходе из твердого состояния в жидкое ( О С) не изменяется, как у большинства веществ, а возрастает

При дальнейшем нагревании от 0 до 4 С плотность воды также увеличивается и при 4 С плотность максимальна. При более высоких температурах она уменьшается. Теплоемкость воды аномально велика 4 2 кДж / кг — К, благодаря этому свойству вода является как бы температурным регулятором Земли.

Плотность воды при переходе из твердого состояния в жидкое ( О С) не изменяется, как у большинства веществ, а возрастает. При дальнейшем нагревании от 0 до 4 С плотность воды также увеличивается и при 4 С плотность максимальна. При более высоких температурах она уменьшается. Теплоемкость воды аномально велика 4 2 кДж / кг — К, благодаря этому свойству вода является как бы температурным регулятором Земли.

Плотность воды при О С составляет 0 99987 кг / л; наибольшую плотность, равную 1 000 кг / л или 999 973 кг / м3, вода имеет при 3 98 С.

Расчетные данные для определения молекулярной рефракции веществ по правилу аддитивности.

Плотность воды рН) О при данной температуре находят по справочной таблице. С помощью рефрактометра определяют показатель преломления п при данной температуре.

Плотность воды в зависимости от температуры приведена в справочниках для широкого диапазона температур. Для установления зависимости плотности от температуры необходимо при заданных температурах взвесить пикнометр с водой и. Масса пустого пикнометра не зависит от температуры.

Плотность воды р равна 1000 кг / м3 ( 1 г / см3), масса моля [ л, 18 — Ю 3 кг / моль.

Плотность воды следует принимать с учетом засоленности и наличия в ней взвешенных частиц.

Плотность воды, так же как и других капельных жидкостей, слабо зависит от температуры и почти пе зависит от давления, так как под влиянием даже больших давлений объем жидкости меняется сравнительно мало.

Плотность воды принята равной 1 г. смл при 4 С.

Значения других единиц, равные введённым выше

 открыть 

 свернуть 

Метрическая система

плотность воды при 100°C → тонна на кубометр
(т/м³)
плотность воды при 100°C → килограмм на кубометр
(кг/м³)
плотность воды при 100°C → грамм на кубометр
(г/м³)
плотность воды при 100°C → миллиграмм на кубометр
(мг/м³)
плотность воды при 100°C → килограмм на литр
(кг/л)
плотность воды при 100°C → грамм на литр
(г/л)
плотность воды при 100°C → миллиграмм на литр
(мг/л)
плотность воды при 100°C → килограмм на кубический дециметр
(кг/дм³)
плотность воды при 100°C → грамм на кубический дециметр
(г/дм³)
плотность воды при 100°C → миллиграмм на кубический дециметр
(мг/дм³)
плотность воды при 100°C → килограмм на кубический сантиметр
(кг/см³)
плотность воды при 100°C → грамм на кубический сантиметр
(г/см³)
плотность воды при 100°C → миллиграмм на кубический сантиметр
(мг/см³)
плотность воды при 100°C → килограмм на миллилитр
(кг/мл)
плотность воды при 100°C → грамм на миллилитр
(г/мл)
плотность воды при 100°C → миллиграмм на миллилитр
(мг/мл)

Единицы:

тонна на кубометр
(т/м³)

 /
килограмм на кубометр
(кг/м³)

 /
грамм на кубометр
(г/м³)

 /
миллиграмм на кубометр
(мг/м³)

 /
килограмм на литр
(кг/л)

 /
грамм на литр
(г/л)

 /
миллиграмм на литр
(мг/л)

 /
килограмм на кубический дециметр
(кг/дм³)

 /
грамм на кубический дециметр
(г/дм³)

 /
миллиграмм на кубический дециметр
(мг/дм³)

 /
килограмм на кубический сантиметр
(кг/см³)

 /
грамм на кубический сантиметр
(г/см³)

 /
миллиграмм на кубический сантиметр
(мг/см³)

 /
килограмм на миллилитр
(кг/мл)

 /
грамм на миллилитр
(г/мл)

 /
миллиграмм на миллилитр
(мг/мл)

 открыть 

 свернуть 

Британские и американские единицы

плотность воды при 100°C → фунты на кубический ярд
(lb/yd³)
плотность воды при 100°C → фунты на кубический фут
(lb/ft³)
плотность воды при 100°C → фунты на кубический дюйм
(lb/in³)
плотность воды при 100°C → фунты на галлон США
(lb/gal)
плотность воды при 100°C → фунты на британский галлон
плотность воды при 100°C → фунты на бушель США
плотность воды при 100°C → унции на кубический ярд
(oz/yd³)
плотность воды при 100°C → унции на кубический фунт
(oz/ft³)
плотность воды при 100°C → унции на кубический дюйм
(oz/in³)
плотность воды при 100°C → унции на галлон США
(oz/gal)
плотность воды при 100°C → унции на британский галлон
плотность воды при 100°C → унции на бушель США

Единицы:

фунты на кубический ярд
(lb/yd³)

 /
фунты на кубический фут
(lb/ft³)

 /
фунты на кубический дюйм
(lb/in³)

 /
фунты на галлон США
(lb/gal)

 /
фунты на британский галлон

 /
фунты на бушель США

 /
унции на кубический ярд
(oz/yd³)

 /
унции на кубический фунт
(oz/ft³)

 /
унции на кубический дюйм
(oz/in³)

 /
унции на галлон США
(oz/gal)

 /
унции на британский галлон

 /
унции на бушель США

 открыть 

 свернуть 

Английские инжернерные и британские гравитационные единицы

плотность воды при 100°C → Слаг на кубический ярд
(slug/yd³)
плотность воды при 100°C → Слаг на кубический фут
(slug/ft³)
плотность воды при 100°C → Слаг на кубический дюйм
(slug/in³)

Единицы:

Слаг на кубический ярд
(slug/yd³)

 /
Слаг на кубический фут
(slug/ft³)

 /
Слаг на кубический дюйм
(slug/in³)

 открыть 

 свернуть 

Естественнные единицы

В физике естественные единицы измерения базируются только на фундаментальных физических константах. Определение этих единиц никак не связано ни с какими историческими человеческими построениями, только с фундаментальными законами природы.

плотность воды при 100°C → планковская плотность
(L⁻³M)

Единицы:

планковская плотность
(L⁻³M)

 открыть 

 свернуть 

Плотности различных веществ

Это лишь несколько примеров. Все плотности даны для стандартных условий температур и давления.

плотность воды при 100°C → плотность воздуха на уровне моря
плотность воды при 100°C → плотность воды при 0°C
плотность воды при 100°C → плотность воды при 4°C
плотность воды при 100°C → плотность воды при 100°C
плотность воды при 100°C → плотность льда
плотность воды при 100°C → плотность алмаза
плотность воды при 100°C → плотность железа
плотность воды при 100°C → плотность меди
плотность воды при 100°C → плотность серебра
плотность воды при 100°C → плотность свинца
плотность воды при 100°C → плотность золота
плотность воды при 100°C → плотность платины

Единицы:

плотность воздуха на уровне моря

 /
плотность воды при 0°C

 /
плотность воды при 4°C

 /
плотность воды при 100°C

 /
плотность льда

 /
плотность алмаза

 /
плотность железа

 /
плотность меди

 /
плотность серебра

 /
плотность свинца

 /
плотность золота

 /
плотность платины

Решение задач: плотность вещества

А теперь давайте тренироваться!

Задача 1

Цилиндр 1 поочерёдно взвешивают с цилиндром 2 такого же объёма, а затем с цилиндром 3, объем которого меньше (как показано на рисунке).

Какой цилиндр имеет максимальную среднюю плотность?

Решение:

Плотность тел прямо пропорциональна массе и обратно пропорциональна объему:

р = m/V

Исходя из проведенных опытов можно сделать следующие выводы:

1) масса первого цилиндра больше массы второго цилиндра при одинаковом объеме. Значит плотность первого цилиндра выше плотности второго.

2) масса первого цилиндра равна массе третьего цилиндра, объем которого меньше. Следовательно, плотность третьего цилиндра больше плотности первого цилиндра.

Таким образом, средние плотности цилиндров:

р2 < р1 < р3

Ответ: 3.

Задача 2

Шар 1 последовательно взвешивают на рычажных весах с шаром 2 и шаром 3 (как показано на рисунке). Для объёмов шаров справедливо соотношение V1 = V3 < V2.

Какой шар имеет максимальную среднюю плотность?

Решение:

Из рисунка ясно, что масса шаров 1 и 2 равна — следовательно, плотность второго шара меньше, чем первого. Третий шар тяжелее, чем первый при одинаковом объёме, поэтому плотность третьего шара больше плотности первого. Таким образом, максимальную среднюю плотность имеет шар 3.

Ответ: 3

Задача 3

Найти плотность шара объемом 0,5 м^3 и массой 1,5 кг.

Решение:

Возьмем формулу плотности и подставим в нее данные нам значения.

р = m/V

р = 1,5/0,5 = 3 кг/м^3

Ответ: р = 3 кг/м^3

Плавание тел

Почему шарик с гелием взлетает? Или мяч при игре в водное поло не тонет?
Жидкости и газы действуют на погруженные тела с выталкивающей силой. Подробно это явление рассматривают в теме «‎Сила Архимеда»‎. Если говорить простым языком: если плотность тела, погруженного в воду, больше плотности воды — тело пойдет ко дну. Если меньше – оно всплывет на поверхность.

Задача 1

Стальной шарик в воде падает медленнее, чем в воздухе. Чем это объясняется?

Решение:

Плотность воды значительно выше, чем воздуха, поэтому стальной шарик в воде падает медленнее

Задача 2

В таблице даны плотности некоторых твердых веществ. Если вырезать из этих веществ кубики, то какие кубики смогут плавать в воде? Плотность воды — 1000 кг/м3.

Название вещества

Плотность вещества, кг/м3

Алюминий

2700

Парафин

900

Плексиглас

1200

Фарфор

2300

Сосна

400

Решение:

Плавать будут кубики, плотность которых меньше плотности воды, то есть сделанные из парафина или сосны.

Примеры

Материал Удельный вес
Бальзовое дерево 0,2
Дубовая древесина 0,75
Спирт этиловый 0,78
Оливковое масло 0,91
Воды 1
Айронвуд 1.5
Графитовый 1,9–2,3
Столовая соль 2,17
Алюминий 2,7
Цемент 3,15
Железо 7,87
Медь 8,96
Вести 11,35
Меркурий 13,56
Обедненный уран 19,1
Золото 19,3
Осмий 22,59

(Образцы могут отличаться, и эти цифры являются приблизительными.) Вещества с относительной плотностью 1 обладают нейтральной плавучестью, вещества с RD больше единицы плотнее воды и поэтому (без учета эффектов поверхностного натяжения ) будут в ней тонуть, а вещества с RD меньше единицы менее плотны, чем вода, и поэтому будут плавать.

Пример:

рDЧАС2Ознак равноρMатеряалρЧАС2О знак равнорD,{\ displaystyle RD_ {H_ {2} O} = {\ frac {\ rho _ {\ mathrm {Material}}} {\ rho _ {\ mathrm {H_ {2} O}}}} \ = RD,}

Газообразный гелий имеет плотность 0,164 г / л; он в 0,139 раза плотнее воздуха , имеющего плотность 1,18 г / л.

  • Обычно моча имеет удельный вес от 1,003 до 1,030. Диагностический тест на удельный вес мочи используется для оценки способности почек к концентрации для оценки мочевыделительной системы. Низкая концентрация может указывать на несахарный диабет , а высокая концентрация может указывать на альбуминурию или глюкозурию .
  • Кровь обычно имеет удельный вес примерно 1,060.
  • Водка 80 ° proof (40% об.) Имеет удельный вес 0,9498.

Плотность и удельный вес жидкостей

Плотность и удельный вес жидкостей. 1. одним из важнейших физических свойств жидкости является ее плотность р, то есть масса жидкости в единице объема. Равномерная плотность жидкости р =-$ г. (2л) Где M-масса рассматриваемой жидкости. C7-это объем этой массы. 12. Плотность-это свойство среды, определяющее распределение mass. At в любое время、 Определяется отношением P = золото 4^ -. (2.2) Олень.,0.

В единицах Си плотность выражается в килограммах на 1 кубический метр (кг / м3). Например, при температуре 20°С средняя плотность жидкости Р составляет кг / м3. Вода 998 Дизельное топливо. 850. Керосина 820 Масло 900 Меркурий 13,550 Вес единичного объема жидкости называется ее удельным весом. Удельный вес выражается в Ньютон / кубический метр (Н / м3). Удельный вес однородной жидкости y = 4 * > ад Где O-вес целевого объема Жидкость организма.

Однако необходимо учитывать тот факт, что значения параметров, содержащиеся в приведенных выше и многих других гидродинамических зависимостях, варьируются в пределах 0,5% от поверхности Земли, а точность гидравлических расчетов обычно составляет 3-5%. Это позволяет получить среднее значение ускорения силы тяжести (9,81 м / с2) во всех случаях, поэтому нельзя учитывать фактические колебания этой величины при определении удельного веса.

Таким образом, средняя удельная масса жидкости _ указана ниже, Н / м3, при 20°С. Вода 9790 Дизельное топливо 8300 Керосин 8000 Масло 8830 Меркурий 132 900 Плотность и удельный вес жидкости зависят от температуры. В качестве примера приведем значения плотности и удельного веса воды при различных температурах. * ° , ° С0 4 25 50100 Р. кг / м3 999,9 1000 997 998 959 ВН / м.

Отношение 5 плотностей (удельного веса) 2 жидкостей называется относительной плотностью (относительным удельным весом) и определяется как отношение массы (веса) рассматриваемой жидкости при определенной температуре (°С) и массы (массы) дистиллированной воды при 4°С и равных объемах при атмосферном давлении. В качестве примера мы показываем относительную плотность (относительный удельный вес) значение 20°для той же жидкости, что и раньше (84°для той же жидкости).

Плотность воды в зависимости от температуры

Принято считать, что плотность воды равна 1000 кг/м3, 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?

Максимальная плотность воды достигается при температуре 3,8…4,2°С. В этих условиях точное значение плотности воды составляет 999,972 кг/м3. Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.

Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м3 и г/мл.

В таблице приведены значения плотности воды в кг/м3 и в г/мл (г/см3), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м3 или 0,9971 г/мл.

Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м3. Плотность соленой воды и водных растворов солей можно узнать в этой таблице. Плотность воды при различных температурах — таблица

t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл t, °С ρ, кг/м3 ρ, г/мл
999,8 0,9998 62 982,1 0,9821 200 864,7 0,8647
0,1 999,8 0,9998 64 981,1 0,9811 210 852,8 0,8528
2 999,9 0,9999 66 980 0,98 220 840,3 0,8403
4 1000 1 68 978,9 0,9789 230 827,3 0,8273
6 999,9 0,9999 70 977,8 0,9778 240 813,6 0,8136
8 999,9 0,9999 72 976,6 0,9766 250 799,2 0,7992
10 999,7 0,9997 74 975,4 0,9754 260 783,9 0,7839
12 999,5 0,9995 76 974,2 0,9742 270 767,8 0,7678
14 999,2 0,9992 78 973 0,973 280 750,5 0,7505
16 999 0,999 80 971,8 0,9718 290 732,1 0,7321
18 998,6 0,9986 82 970,5 0,9705 300 712,2 0,7122
20 998,2 0,9982 84 969,3 0,9693 305 701,7 0,7017
22 997,8 0,9978 86 967,8 0,9678 310 690,6 0,6906
24 997,3 0,9973 88 966,6 0,9666 315 679,1 0,6791
26 996,8 0,9968 90 965,3 0,9653 320 666,9 0,6669
28 996,2 0,9962 92 963,9 0,9639 325 654,1 0,6541
30 995,7 0,9957 94 962,6 0,9626 330 640,5 0,6405
32 995 0,995 96 961,2 0,9612 335 625,9 0,6259
34 994,4 0,9944 98 959,8 0,9598 340 610,1 0,6101
36 993,7 0,9937 100 958,4 0,9584 345 593,2 0,5932
38 993 0,993 105 954,5 0,9545 350 574,5 0,5745
40 992,2 0,9922 110 950,7 0,9507 355 553,3 0,5533
42 991,4 0,9914 115 946,8 0,9468 360 528,3 0,5283
44 990,6 0,9906 120 942,9 0,9429 362 516,6 0,5166
46 989,8 0,9898 125 938,8 0,9388 364 503,5 0,5035
48 988,9 0,9889 130 934,6 0,9346 366 488,5 0,4885
50 988 0,988 140 925,8 0,9258 368 470,6 0,4706
52 987,1 0,9871 150 916,8 0,9168 370 448,4 0,4484
54 986,2 0,9862 160 907,3 0,9073 371 435,2 0,4352
56 985,2 0,9852 170 897,3 0,8973 372 418,1 0,4181
58 984,2 0,9842 180 886,9 0,8869 373 396,2 0,3962
60 983,2 0,9832 190 876 0,876 374,12 317,8 0,3178

Следует отметить, что при увеличении температуры воды (выше 4°С) ее плотность уменьшается. Например, по данным таблицы, плотность воды при температуре 20°С равна 998,2 кг/м3, а при ее нагревании до 90°С, величина плотности снижается до значения 965,3 кг/м3. Удельная масса воды при нормальных условиях значительно отличается от ее плотности при высоких температурах. Средняя плотность воды, находящейся при температуре 200…370°С намного меньше ее плотности в обычном температурном диапазоне от 0 до 100°С.

Смена агрегатного состояния воды приводит к существенному изменению ее плотности. Так, величина плотности льда при 0°С имеет значение 916…920 кг/м3, а плотность водяного пара составляет величину в сотые доли килограмма на кубический метр. Следует отметить, что значение плотности воды почти в 1000 раз больше плотности воздуха при нормальных условиях.

Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.