Тема: измерение превышений при геометрическом нивелировании трассы

Оглавление

Нивелирная рейка принцип работы

При производстве геометрического нивелирования кроме нивелира необходимы рейки. Так как по определению нивелирование есть определение отвесного расстояния

, рейка являются линейными мерными приборами, представляющие собой линейки длиной 3-4 м., цельные или складные пополам, иногда телескопические, которые можно применять только длятехнического нивелирования. На рейках при изготовлении наносятся деления в виде шашек (ценою в 1 см.) чередующиеся черного и белого цвета или красного и белого. Такие рейки называются шашечными, они могут быть односторонними или двусторонними, одна сторона черно-белая, другая сторона красно-белая. Шашечные рейки имеют так же штрихи, отделяющиедециметровые деления. Дециметровые деления оцифрованыметровые деления. Изготовление реек регламентирует ГОСТ 11158-76.Типы реек по ГОСТу соответствуют типам нивелиров. Рейка нивелирная РН-05 односторонняя, штриховая с инварной полосой применяется для измерения превышений с точностью 0.5 мм на 1 км хода. Рейка нивелирная РН-3 деревянная, двухсторонняя, шашечная применяется для измерения превышений с точностью 3 мм на 1 км хода. Рейка нивелирная РН-10 деревянная, двухсторонняя, шашечная применяется для измерения превышений с точностью 10 мм на 1 км хода (рис. 4.36). Длина реек бывает различной: 1200, 1500, 3000 и 4000 мм. У складных реек в шифр добавляется буква С, например, РН-10С.

Рис. 13 Нивелирные шашечные рейки

Нивелирные рейки изготавливаются из сухой, выдержанной ели одно- или двутаврового сечения. Техническое нивелирование и нивелирование III, IV классов выполняют при помощи цельных реек длиной 3 м двутаврового сечения, шириной 10 – 12 см и толщиной 2 – 3 см . На нижнюю часть рейки крепится металлическая пластина, называемая пяткой рейки. Для технического нивелирования можно использовать складные рейки, длиной 3-4 м. или телескопические. Сантиметровые деления в виде шашек нанесены с двух сторон на белом фоне. Такие рейки называются шашечными.

На одной стороне они выполнены черным цветом, на другой – красным. На стороне с черными делениями счет начинается с нуля от основания (пятки) рейки. Штрихами и цифрами отмечен каждый десяток сантиметров. В комплект входит пара реек. Черные стороны у них одинаковы. На красной стороне одной из них отсчет начинается с числа 4683, а у другой с числа 4783, т.е. начала отсчетов по красным сторонам сдвинуты на 100 мм. Разность пяток для данной рейки является постоянной величиной, что позволяет контролировать правильность отсчетов, разность пяток называют также разностью нулей рейки. Различают рейки для перевернутого отображения в окуляре нивелира (рейки РН-3, РН-10 и т.д.) и для прямого отображения (РН-10П) для нивелиров с прямым изображением. Для установки рейки в отвесное положение на ней имеется круглый уровень или отвес.

На штриховых

односторонних рейках деления наносят на инварную ленточную полосу, которая натягивается вдоль деревянного бруска при помощи специального устройства. Деления в виде штрихов наносят через 5 мм. Для определения пригодности нивелирных реек к работе выполняют их исследования.

1. Поверхность рейки должна быть плоской. Уклонение от плоскости по ГОСТу допускается 3 мм для РН-05, 6 мм для РН-3 и 10 мм для РН-10. Вдоль рейки натягивают нитку и просвет между ниткой и рейкой измеряют в самом широком месте.

2. Случайная ошибка в положении дециметровых и метровых делений не должна превышать 0.15 мм для штриховых инварных реек и 0.5 мм для деревянных шашечных реек. Это исследование выполняют с помощью контрольной линейки или с помощью специальных компараторов.

3. Определение разности пяток или разности нулей рейки. Это исследование выполняют на расстоянии рейки и нивелира примерно 50 м. путем взятия отсчетов по черной и красной сторонам рейки, стоящей на одной и той же точке. Определение выполняется при 3-х разных горизонтах инструмента. За окончательное значение разности берут среднее, если определенные значения разностей не отличаются между собой более, чем на 3 мм.

Достоинства и недостатки оптических и лазерных приборов

Среди главных преимуществ оптических нивелиров можно назвать их автономность, приемлемую цену и высокое качество измерений. Для работы с прибором не нужны ни батарейки, ни розетка. С другой стороны, в одиночку сделать замеры не получится. Для работы с нивелиром этого типа обязательно нужно два человека. Один фиксирует специальную линейку для нивелира с нанесённой на неё шкалой деления ценой 10 мм, тогда как его партнёр производит все необходимые замеры, параллельно записывая нужные сведения в тетрадь.

Цифры на рейке нанесены с шагом в 10 см, а значения от нуля до конца рейки – в дециметрах. Для удобства пять сантиметровых рисок каждого дециметра объединены ещё и вертикальной полоской, так что вся рейка оказывается размеченной знаками в виде буквы «Е», прямой и зеркальной

Работа с нивелиром данной категории не отличается особой сложностью, поскольку прибор не привередлив к погодным условиям, обычно такие приборы изготавливаются из прочных материалов, имеют влаго- и пылезащиту. Главное − понять, как пользоваться нивелиром и рейкой.

Что же касается лазерных приборов, то они больше подходят для бытовых работ. Что же такое лазерный нивелир, и чем он отличается от оптического? Для них не требуется участие посторонних лиц, они универсальны и просты в использовании. Единственный недостаток – необходимость подключения к сети электроэнергии или использование батареек. В этом случае полезной может стать встроенная функция автоматического отключения. Она программируется пользователем на определённый период времени, после которого прибор отключается.

18.5. ПОРЯДОК ИЗМЕРЕНИЯ ПРЕВЫШЕНИЙ С ПОМОЩЬЮ НИВЕЛИРА

Для определения высот точек на объектах лесного и садово-паркового хозяйства применяют техническое нивелирование. Для производства технического нивелирования используют точные и технические нивелиры (модели Н-3, Н-10 и их модификации), а также нивелирные рейки шашечного типа.Техническое нивелирование выполняют в основном методом из середины с неравенством плеч не более 10 м. Расстояние от нивелира до реек не должно превышать 100 м, а при хорошей видимости –150 м. 3.
Рейки в общем случае ставятся только на закрепленных точках (реперах, колышках, костылях, башмаках и т. д,), между которыми определяется превышение. Рейки на землю устанавливаются лишь при съемке рельефа.

Рис. 18.13. Нивелирный башмак и нивелирный костыль

Работу на станции выполняют в следующей последовательности (рис. 18.4):
– на связующие точки А и В устанавливают нивелирные рейки, а посередине между ними ставят нивелир и приводят его в рабочее положение с помощью подъемных винтов, устанавливая пузырек круглого уровня в нуль-пункт;
– наводят зрительную трубу нивелира на заднюю рейку (точка А) и берут отсчет по черной стороне (Зчерн);
– наводят зрительную трубу нивелира на переднюю рейку (точка В) и выполняют отсчеты сначала по черной стороне (Пчерн), а затем – по красной стороне (Пкр);
– наводят вновь зрительную трубу нивелира на заднюю рейку и снимают отсчет по красной стороне (Зкр);
– если между связующими точками А и В имеются промежуточные точки (С и D), то на них устанавливают последовательно заднюю рейку и берут отсчеты только по черной стороне (с черн и d черн). Перед каждым отсчетом по рейке необходимо визирную ось зрительной трубы нивелира приводить в горизонтальное положение с помощью пузырька цилиндрического уровня или компенсатора;
– для контроля измерений вычисляют разности нулей передней и задней реек (Пкр – Пчерн) и (Зкр – Зчерн). Расхождение разностей нулей реек по абсолютной величине не должно превышать 5 мм;
– на каждой станции дважды вычисляют превышения по черным и красным сторонам реек: h черн = З черн – П черн; h кр = З кр – П кр. Расхождение между этими превышениями не должно быть более ± 5 мм;
– высоту передней точки (В) вычисляют через среднее превышение

h ср = (h черн + h кр) / 2.

по формуле

НВ = НА + h ср;

– высоты промежуточных точек (С и D) вычисляют по формулам

ГН = НА + З черн, НС = ГН – с, НD = ГН – d.

Точность технического нивелирования на станции характеризуется предельной погрешностью ±10 мм или ±50 мм на 1 км нивелирного хода.

Нивелирование IV классаНивелирование IV класса применяется при создании высотной съемочной сети (съемочного обоснования) для топографических съемок местности. Для нивелирования IV класса используют точные нивелиры (модели Н-3, Н-3К или их модификации) и шашечные рейки. Расстояние на станции от прибора до реек не должно превышать 100 м, а неравенство плеч не должно быть более 5 м.
Порядок работы на станции при нивелировании IV класса такой же, как и при техническом нивелировании, за исключением контроля расстояний до реек, которое определяют нитяным дальномером с помощью отсчетов по верхней дальномерной нити при наблюдениях черных сторон задней и передней реек.
Расхождение между превышениями по черной и красной сторонам реек на станции не должно превышать ±5 мм.  Точность нивелирования IV класса выше технического нивелирования и составляет ±20 мм на 1 км нивелирного хода.

Принципиальные основы геометрического нивелирования

При работе с нивелиром существует ряд методов позволяющих эффективно добиваться точного результата:

  • Методом нивелирования из середины
  • Методом нивелирования вперед

В основе каждого из них лежит свой принцип работы. Так первый способ подразумевает отсчет показаний по геодезическим рейкам, которые устанавливаются в точках стояния, сзади и спереди нивелира. Затем снимаются данные разницы превышения и записываются в журнал. Способ расположения нивелира по отношению к рейкам получил название «метод нивелирования из середины», который является основным методом при строительстве.

Данный метод основан на принципе отсчета, по аналогии с теодолитным ходом, ведущимся с заранее известных высот, называемых реперами. Принцип хорошо иллюстрирует картинка, где есть точки А и Б. Естественно разница между точками по рекам составляет превышение, которое может быть как отрицательным, так и положительным. Данные одного превышения на местности, на практике нельзя считать окончательным, поскольку для объективной картины ее рельефа, необходимо снять как можно больше таких превышений.

Система сравнивания высот, применяемая в топографических планах, носит название «Балтийская». Она имеет начальную точку нуля Кронштадтского футштока, который в свою очередь находится на балтийском побережье. В данном случае на картинке, абсолютная высота (точка Б) рассчитывается, как h = А + а – б. Точка А – это отметка государственной системы высот, а считывание с реек ведется по отрезкам а, б.

Нивелирование методом «вперед» основано на использовании прибора и одной рейки, устанавливаемой перед ним. Сам нивелир устанавливается на заранее известную точку, а формула, по которой рассчитывается превышение, имеет вид:

h = А + i – б, где i — высота нивелира, измеряемая рулеткой. Такой способ применяется реже, так как имеет сложности в установки прибора на вертикальной поверхности стен. К тому же работа дистанционным способом намного легче и позволяет не приближаться к объектам.

Здесь за начальную точку отсчета, условно принято брать урез воды водоемов сообщающихся с любым мировым океаном. Но в таком случае мы будем иметь дело с условной системой высот, точности которой будет не хватать для проведения масштабных строительных работ. И все-таки, данный принцип геометрического нивелирования, отлично подойдет для локальных строительных площадок, где не требуется увязка высот здания с региональными системами.

Нивелирование

Нивели́рование (от фр. nivellement или фр. nivèlement — «выравнивание», от фр. niveau — «уровень», «ровень») — определение разности высот двух и более точек земной поверхности, то есть определение превышения. Существуют следующие способы нивелирования:

  1. Геометрическое (нивелиром и рейками);
  2. Тригонометрическое (угломерными приборами (в осн. теодолитом или тахеометром посредством измерения наклонения визирных линий с одной точки на другую);
  3. Барометрическое (при помощи барометра).
  4. Гидростатическое (основано на свойстве жидкости сообщающихся сосудов всегда находиться на одном уровне, независимо от высоты точек, на которых установлены эти сосуды)
  5. Радиолокационное (производится с помощью радиовысотомеров и эхолотов, установленных как на воздушных, так и на водных судах, автоматически вычерчивающих профиль проходимого пути)
  6. Спутниковое (производится с помощью GNSS-приёмников)

«Нивелировать»

Геометрическое нивелирование

Во время геометрического нивелирования превышение между точками получают как разность отсчётов по рейкам при горизонтальном положении визирной оси нивелира. Этот метод является наиболее простым и точным, но позволяет с одной постановки прибора получить превышение не более длины рейки, поэтому при больших превышениях в горной местности его эффективность падает.

Определение превышения заключается в визировании горизонтальным лучом с помощью нивелира и отсчета разности высот по рейкам. h = h b − h a ; {\displaystyle h=h_{b}-h_{a};} где h b {\displaystyle h_{b}}  — отсчет по задней рейке; h a {\displaystyle h_{a}}  — отсчёт по передней рейке;

Точность отсчета по рейкам составляет от 1-2 мм (техническое нивелирование) до 0,1 мм (нивелирование I класса).

На рисунке показано нивелирование методом «из середины», также существует метод «вперёд».

Тригонометрическое нивелирование

При тригонометрическом нивелировании превышение между точками определяют по измеренным вертикальным углам и расстояниям между точками (горизонтальным проложениям). Тригонометрическое нивелирование позволяет с одной станции определить практически любое превышение между точками, имеющими взаимную видимость, но его точность ограничена из-за недостаточно точного учёта влияния на величины вертикальных углов оптического преломления и уклонений отвесных линий, особенно в горной местности.

Превышение определяется по измеренному теодолитом (кипрегелем, эклиметром или тахеометром) углу наклона линии визирования с одной точки на другую (α) и расстоянию между этими точками (S). Тригонометрическое нивелирование применяется при топографической съемке и других работах. h = S ⋅ sin ⁡ α ; {\displaystyle h=S\cdot \sin \alpha ;} В основе тригонометрического нивелирования лежит линейно-угловая засечка.

Тригонометрическое нивелирование

Барометрическое нивелирование

Превышение определяется по значениям атмосферного давления при помощи полной барометрической формулы

Барометрическое нивелирование

Гидростатическое нивелирование

Основано на свойстве поверхности жидкости в сообщающихся сосудах находиться на одном уровне. Этот метод имеет высокую точность, позволяет определять разность высот между точками при отсутствии взаимной видимости, но измеряемая разность высот ограничена длиной наибольшей из трубок, соединённых шлангами.

Гидроуровень

Превышения вычисляются методом GNSS-измерений (GPS, ГЛОНАСС и так далее).

Спутниковое нивелирование

Построение плоскостей

Вертикальное проектирование или построение плоскостей выполняется электронно-механическими прибором Зенит-прибором или лазерным уровнем.

Зенит-прибором (прибором оптического вертикального проецирования) переносят точки по вертикали. При возведении высоких зданий и сооружений положение стен и других элементов на каждом этаже проверяют от осей. Точки пересечения осей проецируют оптическим или лазерным лучом зенит-прибора.

Отметки проецируются с использованием принципа вращения лазерного луча и оптической системы, позволяющей развернуть луч в линию. Основное достоинство лазерного уровня — простота в работе, не требующая специальных навыков по настройке прибора, и возможность проведения работ только одним человеком. Такие уровни применяются в строительстве. Многие модели лазерных уровней имеют также возможность построения наклонных плоскостей и отвесных линий.

ru.wikipedia.org

Принцип работы лазерных уровней

Современные электронные нивелиры построены на визуализации отметок проецируемых самим прибором с помощью лазера. При этом разметка может производиться лучом сразу в нескольких плоскостях предметов и помещений. В качестве примера рассмотрим работу ротационного уровня, скорость вращения луча которого, достигает 400 -550 об/мин.

Преимущество использования такого нивелира в том, что им можно производить разметку, высчитывать превышение в условиях закрытых узких пространств помещений и на открытой местности, с минимальной погрешностью и под любым углом. Работать можно, как при дневном освещении, так и в темное время суток. Его удобно использовать при поклейки плитки на стену, оклейки обоев и выставления иных конструкций. С его помощью выполняют:

  • нивелировку
  • превышение точек
  • размечать угол наклона конструкций

Лазерные уровни особенно незаменимы, там, где необходимо производить разметку на больших и удаленных плоскостях, так как они более удобны в отличие от веревочных отвесов, угольников и реечных уровней. Они безопасны в применении и относятся к 2 классу излучения. Сам луч прибора так же не представляет угрозы для человека, за исключением длительного воздействия на глаза. Все лазерные уровни ударопрочны и влагонепроницаемы, поскольку такие факторы влияют на работу и защита от них изначально заложена в разработку приборов. Для большего удобства, при интенсивном солнечном свете, рекомендовано использовать специализированные очки.

Все приборы необходимо подвергать проверке на точность периодично (раз в год). Желательно приобретать приборы известных марок и производителей. Использование непроверенного инструмента, может стоить вам больших ошибок, особенно при строительстве многоэтажных или многоярусных конструкций. Ошибки в сантиметрах на начальных этапах строительства, могут привести к невозможности его завершения, по причине не соответствия размеров верхних помещений или консолей, типовым завершающим конструкциям (фермам, плитам перекрытий и т.д.). Помните о том, что от кропотливой работы геодезистов, зависит весь ход строительного процесса, где задействовано множество ресурсов, как людских, так и машин (механизмов). А переделывать всю работу порой невозможно и дорого.

Тригонометрическая нивелировка

Она построена на принципе использования одного из двух измерительных приборов, тахеометра или теодолита. Для считывания превышения используют угол от горизонта до верхнего края измерительной рейки, а в случае большой удаленности объекта его вершины. К примеру, этим способом измеряют высоты опор линий электропередач. Он хоть и дает незначительную погрешность расчета, но зато позволяет производить расчеты превышений на больших расстояниях и углах рельефа местности.

Формула высоты тригонометрического измерения выглядит так: h = s * tg ν + i – б или h = S * sin ν + i – б. Значения величин подставляются в нее с учетом того, что:

  1. ν —  это угол луча по отношению к горизонту
  2. s — горизонт линии
  3. S — длина отрезка визирной линии
  4. i — высота измерительного прибора
  5. б — высота визировки

Современные системы нивелирования в дорожном строительстве

В современном дорожном строительстве широко применяются автоматизированные системы нивелирования, которые позволяют управлять рабочим органом дорожно-строительной техники в зависимости от его текущего положения. При этом системы автоматического нивелирования отличаются высокой точностью работ, значительно повышающей качество дорожного полотна и сокращающей общие сроки строительства.

Автоматические системы нивелирования, установленные на асфальтоукладчиках, дорожных фрезах или бульдозерах, позволяют устранять дефекты старого дорожного полотна при укладке нового слоя покрытия. Такая нивелировка контролирует поперечный уклон дороги и выполняет его точно с заданными проектом параметрами.

Современные системы нивелировки для дорожно-строительной техники разделяются на несколько видов в зависимости от используемой технологии:

  • ультразвуковые системы с различным количеством датчиков;
  • лазерные системы нивелирования;
  • системы на базе спутниковых GPS-технологий;
  • трехмерные системы, работающие на базе тахеометра.

В зависимости от сложности и требуемого качества дорожно-строительных работ может использоваться та или иная система автоматической нивелировки. Главной особенностью таких систем, предлагаемых лидирующими мировыми производителями, является возможность модернизации систем нивелирования от простых до наиболее сложных.

Применение нивелировки

Результатом нивелировки является создание опорной геодезической сети, которая служит основой при проведении топографической съемки местности или любых геодезических измерениях.

Нивелирование широко применяется в научных и исследовательских целях: при изучении фигуры земного шара, движений земной коры, а также для фиксации колебаний уровня океанов или морей.

Нивелировка также повсеместно применяется для решения прикладных задач, связанных со строительством различных объектов, прокладкой инженерных коммуникаций, путей сообщения и т.д. Например, нивелирование необходимо для переноса проектных решений по высоте, а также при монтажных работах для установки строительных конструкций. Для решения всех этих задач используют данные, полученные геодезистами с использованием нивелиров. Помимо этого, для решения узкоспециализированных задач, применяются автоматические системы нивелирования. К таким задачам относится, например, строительство и ремонт дорожного полотна. Кроме этого, датчики, входящие в систему автоматической нивелировки устанавливаются на автомобилях, железнодорожных вагонах, в результате чего можно получить готовый профиль местности в самые короткие сроки.

Классификация оптических нивелиров

В зависимости от класса, прибор используется для определенного вида работ.

I класс – геодезическое назначение

Это высокоточные приборы с минимальной допустимой погрешностью, применяемые для составления сметы и плана строительных работ. Используются экспертами, геодезистами и исследователями для получения максимально точных данных.

II класс – прошедшие строгую проверку соответствию ГОСТам

У этих устройств допустима минимальная погрешность в 2-3 мм, что немного больше, чем у нивелиров первого класса.

Позволяет производить точные измерения не только на близком расстоянии.

Устройства легко перемещать по строительной площадке.

III класс – технический вариант

Оптические нивелиры этого класса оснащаются компенсатором или уровнем, по техническим характеристикам они схожи с приборами второго класса.

Построение плана

_______При построении плана по результатам нивелирования поверхности по квадратам в заданном масштабе строится сетка квадратов, у вершин которых выписываются их отметки.

_______Горизонтали наносятся на план путем интерполирования отметок. Интерполирование отметок может быть выполнено на глаз, но метод требует достаточного навыка. Одним из наиболее простых является метод интерполирования с помощью миллиметровки.

_______интерполирование с помощью восковки

Инструкция по прохождению теста

  • Выберите один из вариантов в каждом из 10 вопросов;
  • Нажмите на кнопку «Показать результат»;
  • Скрипт не покажет результат, пока Вы не ответите на все вопросы;
  • Загляните в окно рядом с номером задания. Если ответ правильный, то там (+). Если Вы ошиблись, там (-).
  • За каждый правильный ответ начисляется 1 балл;
  • Оценки: менее 5 баллов — НЕУДОВЛЕТВОРИТЕЛЬНО, от 5 но менее 7.5 — УДОВЛЕТВОРИТЕЛЬНО, 7.5 и менее 10 — ХОРОШО, 10 — ОТЛИЧНО;
  • Чтобы сбросить результат тестирования, нажать кнопку «Сбросить ответы»;

7.2. 2 проверка.Горизонтальная нить сетки нитей должна быть перпендикулярна оси вращения нивелира

_______
С помощью круглого уровня приводят ось вращения нивелира в отвесное положение.
Среднюю нить наводят на хорошо видимую точку и наводящим винтом плавно вращают трубу в горизонтальном направлении.
Нить сетки не должна сходить с выбранной точки.
Эту же поверку можно делать, наводя среднюю нить на нить отвеса. Средняя нить и нить отвеса должны совпадать.

_______
При несоблюдении условия необходимо снять защитный колпачок и развернуть сетку нитей, предварительно ослабив четыре винта в торце окулярной части трубы отверткой. Выполнение этого условия гарантируется заводом. Поверку делают путем вращения трубы по азимуту. Исправление делают поворотом сетки.


1-ая и 2-я поверка

Нивелирование поверхности

_______Нивелирование поверхности производится для съемки рельефа местности и нанесения его на крупномасштабный топографический план. Результаты нивелирования поверхности используются при составлении проектов вертикальной планировки.

_______Существует два способа нивелирования поверхности.
1. При нивелировании незастроенного участка со спокойным рельефом применяется способ нивелирования по квадратам.
2. При нивелировании застроенных участков применяется способ магистралей.

Нивелирование поверхности по квадратам

_______Квадраты разбивают с помощью теодолита и мерной ленты. Стороны квадратов – от 10 до 50 м, в зависимости от детальности изображения рельефа. Внутри участка прокладывается замкнутый нивелирный ход.

_______Отсчеты на связующие точки производятся по черной и красной сторонам рейки. Отсчеты на остальные вершины квадратов – только по черной стороне. Невязка в нивелирном ходе рассчитывается по следующей формуле:

_______Отметки связующих точек вычисляются через исправленные превышения. Отметки остальных вершин квадратов вычисляются через горизонт прибора.
Если участок местности небольшой, нивелирование может быть выполнено с одной постановки нивелира.

_______

_______топографический планинтерполирования полученных отметок

7.3. 3 поверка. Ось цилиндрического уровня должна быть параллельна визирной оси зрительной трубы (главное геометрическое условие нивелира)

_______
Поверка выполняется в полевых условиях двойным нивелированием одной и той же линии.

_______
Поверка производится нивелированием одной и той же линии способом «вперед». На ровной местности выделяют линию длиной примерно 50 м.

_______Нивелир закрепляют таким образом, чтобы окуляр находился над одним из колышков.

_______Определяют высоту прибора I1

_______
Производят отчет b1 по рейке, стоящей в точке В. Меняют местами нивелир и рейку и находят i2 и b2.

_______X вычисляют по формуле:

_______Если X превышает 4мм, необходимо вычислить b исправленное._______В нашем случае X будет превышать допустимое значение:

_______
При наблюдении главного условия нивелира отсчеты по рейке b1 и b2будут отличаться от правильных на величину X, которая возникает от того, что ось уровня горизонтальна, а визирная ось наклонена. Величина X вычисляется по формуле, приведенной на слайде. Если величина X не превышает 4 мм по модулю, то исправление не производится. В противном случае вычисляется исправительный отсчет bисп.

_______
Наводим трубу на исправленный отсчет. В этот момент визирная ось придет в горизонтальное положение, а ось уровня отклонится, что будет заметно по расхождению концов пузырька. Отклонение концов пузырька уровня от середины исправляется исправительными винтами уровня.

_______
Техническое нивелирование производится в основном при изысканиях и строительстве инженерных сооружений.


3-я поверка

Как пользоваться оптическим нивелиром при строительстве фундамента

Алгоритм действий практически идентичен подготовке основания, с тем лишь отличием, что в этом случае фундамент уже готов, если лишь необходимо выровнять. Итак, последовательность работ:

  1. Установите нивелир так, чтобы чётко видеть каждый угол фундамента в относительно узком поле зрения (90° или меньше). Это поможет избавиться от ошибок, связанных с поворотами нивелира на большие углы. Чтобы свести к минимуму ошибку, установите нивелир над фундаментом как можно ниже.
  2. С помощником, удерживающим рейку, прострелите внешние углы a, b, c, d и запишите их высоту. В нашем примере самый высокий угол b.
  3. Из высоты самого высокого угла вычтите высоты остальных углов и запишите разницу − это будет толщина прокладок.
  4. Подкладками выведите углы до уровня высокого угла с допуском ±1,5 мм.
  5. Протяните шнурку между углами. Натянув шнур горизонтально, положите стальные прокладки между лежнем и фундаментом под все лаги, балки и точечные нагрузки.
  6. Для грубой подгонки лежня к шнуру в нужных местах положите подкладки.

Это общие рекомендации при работе с нивелиром на разных строительных этапах постройки дома.

Приведение нивелира в рабочее положение

_______
Приведение пузырька цилиндрического уровня на середину выполняется непосредственно перед отсчетом с помощью элевационного винта.

_______
Работа на станции складывается из следующих действий:
• отсчет на заднюю рейку по черной стороне (aч),
• отсчет на переднюю рейку по передней стороне (bч),
• отсчет на переднюю рейку по красной стороне (bк),
• отсчет на заднюю рейку по красной стороне (aк),
• отсчеты по чёрной стороне на промежуточных точках.

Контроль:

_______
После нивелирования пикетных точек нивелируются промежуточные (или плюсовые) точки. Эти точки не являются связующими, поэтому отсчеты на этих точках берутся только по черной стороне рейки. Результаты нивелирования записываются в специальные графы нивелирного журнала.

_______
После того как работа на станции закончена, передняя рейка переходит на следующий пикет. В таком же порядке берутся отсчеты при привязке трассы к реперу.

Инструкция по прохождению теста

  • Выберите один из вариантов в каждом из 10 вопросов;
  • Нажмите на кнопку «Показать результат»;
  • Скрипт не покажет результат, пока Вы не ответите на все вопросы;
  • Загляните в окно рядом с номером задания. Если ответ правильный, то там (+). Если Вы ошиблись, там (-).
  • За каждый правильный ответ начисляется 1 балл;
  • Оценки: менее 5 баллов — НЕУДОВЛЕТВОРИТЕЛЬНО, от 5 но менее 7.5 — УДОВЛЕТВОРИТЕЛЬНО, 7.5 и менее 10 — ХОРОШО, 10 — ОТЛИЧНО;
  • Чтобы сбросить результат тестирования, нажать кнопку «Сбросить ответы»;

Современные технологии в нивелировании

На сегодняшний день, в виду необычайно быстрого развития технологий, для нивелировки поверхности могут использоваться различные технологии:

  • лазерные, в основу работы которых положено считывание параметров поверхности с помощью лазерного сканера;
  • ультразвуковые, главным элементом которых является ультразвуковой датчик, испускающий волны;
  • GNSS-технологии, которые связаны с получением данных о текущих координатах через спутниковую связь. Такая технология обеспечивает высочайшую точность нивелирования.

Для эффективной обработки больших потоков данных, получаемых в результате применения вышеуказанных технологий, требуется наличие специального программного обеспечения, выполняющего задачи хранения, управления, визуализации и обработки данных.

Построение профиля трассы

_______По полученным отметкам строится профиль трассы. При построении профиля наносятся в определенном порядке все пикеты и промежуточные точки. Против каждой точки по вертикали откладываются их отметки.

_______Профилем называется изображение на бумаге в уменьшенном виде вертикального разреза местности.

_______Для того чтобы изображение рельефа на профиле было более выразительным, масштаб вертикальных расстояний делается в 10 раз крупнее масштаба горизонтальных. Порядок построения профиля и методика проектирования по профилю будут рассмотрены на лабораторных занятиях.

18.4. ЦИФРОВЫЕ И ЛАЗЕРНЫЕ НИВЕЛИРЫ. ШТРИХКОДОВЫЕ РЕЙКИ

В связи с возрастающими требованиями к качеству и точности геодезических работ в настоящее время широкое применение находят цифровые и лазерные нивелиры. Цифровой нивелир.
Цифровой нивелир – это высокоточный оптический нивелир, но с автоматическим сбором, хранением и обработкой полученной информации (рисунок 18.10). Это значит, что все основные условия, необходимые для выполнения высокоточных измерений оптическими нивелирами, должны соблюдаться и для цифровых нивелиров.

Рис. 18.10. Цифровой нивелир Leica Sprinter 50 и нивелирная двусторонняя рейка для работы в режимах оптического / электронного снятия отсчетов

Работы по выполнению геодезических измерений выполняются в комплекте с рейкой, имеющей шкалу со штрихкодовым рисунком. На лицевой стороне штрихкодовой рейки нанесена растровая шкала чередуемых черных полос и белых промежутков. Их ширина по высоте кодирована. Световые волны от штрихкодового рисунка воздействуют на декодирующие датчики нивелира.
Визирный луч нивелира устанавливается горизонтально с помощью компенсатора.
Декодирующее устройство расшифровывает высотность нивелира относительно рейки по соотношению поступивших в объектив световых воздействий от темных и светлых реечных полос.
Процессор нивелира осуществляет счет измеренных превышений и их суммы с точностью 0,1 мм, а также определяет расстояние до реек и неравенство плеч нивелирования. Время снятия отсчетов по рейке составляет 2–4 с. Электроникой прибора автоматически вводятся поправки за кривизну Земли, рефракцию и погрешность отклонения визирного луча от горизонта.
Результаты измерений с уже введенными поправками отслеживаются на дисплее и по желанию оператора могут направляться в память нивелира. Программа реализует последовательное вычисление и вывод на дисплей высот точек установки рейки.Лазерные нивелиры предназначены для измерения превышений и передачи высотных отметок. Нивелир излучает видимый пучок света, относительно которого производят измерения превышений. В лазерных геодезических приборах в качестве излучателя светового потока используются оптические квантовые генераторы (лазеры).

Рис. 18.11. Лазерные нивелиры

Рис. 18.12. Отсчет по рейке

В настоящее время лазерные нивелиры выпускаются в основном с автоматически горизонтируемым пучком излучения, вращающимся лазерным лучом, что дает возможность формировать в пространстве световые линии и плоскости. Положение этой плоскости фиксируется на специальной рейке или стенах зданий.
Прибор устанавливается на штативе и с помощью трех подъемных винтов приводится в отвесное положение. Световая плоскость фиксируется визуально или с помощью фотоприемного устройства. Нивелир может быть установлен так, чтобы формировалась вертикальная плоскость. Он снабжен вычислительным устройством, позволяющим выполнять автоматическое вычисление превышений, высот и расстояний.