Эффект и элемент пельтье

Оглавление

Элемент Пельтье в руках домашнего мастера

Нужно сразу оговориться, самостоятельное изготавливание термоэлектрического элемента занятие по меньшей мере бессмысленное и никому не нужное. Если только изготавливающий не является учеником седьмого класса и не закрепляет таким образом, полученные на уроках физики, знания.

Гораздо проще купить новый термоэлектрический элемент
в соответствующем магазине. Благо стоят они недорого и недостатка в выборе конкретной модели не наблюдается. А кроме того, что в них нечему ломаться или изнашиваться, любой термоэлемент, снятый со старого компьютера или автомобильного кондиционера, не будет отличаться по своим техническим характеристикам от нового.

Наибольшей популярностью пользуется модель термоэлемента: TEC1-12706. Размеры этого устройства 40 на 40 миллиметров. Состоит он из 127 термопар, соединённых между собою последовательно. Рассчитан на ток в 5 А, при напряжении цепи 12 В. Стоит такой элемент в среднем от 200 до 300 рублей. Но можно найти и за сто, или, вообще, за так, если снять со старого компьютера или какого другого ненужного устройства.

Изготовить с помощью такого элемента можно, как минимум два очень интересных и полезных в хозяйстве устройства.

Как сделать холодильник своими руками

Производство портативных холодильников, в частности, для машин целиком основано на эффекте Пельтье. Для изготовления подобного устройства в домашних условиях понадобиться:

  • Термоэлемент марки TEC1-12706. Стоит 200 рублей в ближайшем магазине (специализированном).
  • Радиатор и вентилятор. Снимаются с отслужившего своё старого компьютера.
  • Контейнер. Любая ненужная ёмкость из пластика, металла или дерева. Снаружи и изнутри такая ёмкость оклеивается теплосберегающими пластинами из пенопласта или пенополистирола.

Термоэлектрический модуль встраивается в крышку контейнера. В этом случае поступление холода будет происходит сверху вниз, что приведёт к равномерному охлаждению ёмкости. Изнутри контейнера, в его крышку с помощью термопасты и крепёжных болтов прикрепляют радиатор.

Для того чтобы увеличить мощность будущего холодильного устройства, можно увеличить количество термоэлементов, до двух-трёх и более. В этом случае модули приклеиваются друг к другу, с соблюдением полярности. Иными словами, горячая сторона нижележащего элемента контактирует с холодной стороной вышележащего.

Снаружи на крышку крепится ещё один радиатор вместе с компьютерным кулером. В месте крепежа радиаторов должна быть хорошая термоизоляция между холодной — внутренней и горячей — внешней сторонами. Необходимо очень аккуратно стягивать верхний и нижний радиаторы крепёжными болтами, чтобы не треснули керамические пластины, располагающихся между ними термоэлементов.

Электричество подключается с помощью блока питания, который можно взять от старого компьютера
.

Портативный термоэлектрогенератор

Такая мини-электростанция может очень выручить туриста или охотника, когда в лесу сядут батареи всех электронных гаджетов. Очень романтично в этой ситуации взять несколько сухих щепок и шишек, развести небольшой костерок и с его помощью зарядить разряженные аккумуляторы, а заодно и поесть приготовить. Именно это позволяет сделать портативный термогенератор, построенный на термоэлементе.

Для постройки этого чудо-девайса необходимо наличие портативной походной печки, работающей на любом виде топлива. В крайнем случае сгодится даже небольшая свечка или таблетка сухого спирта.

В печке разводят огонь, а снаружи с помощью термопасты к ней крепится термоэлектрический модуль. Посредством проводов он подключается к преобразователю напряжения.

Величина получаемого тока напрямую будет зависеть от разницы температур между холодной и горячей сторонами термоэлемента. Для эффективной работы необходима разница между холодной и горячей поверхностью как минимум в 100 градусов.

В этом случае необходимо понимать, что максимальная температура ограничена температурой плавления припоя, с помощью которого изготовлен сам модуль. Поэтому для подобных устройств используют специальные термомодули, которые изготавливают с помощью специального тугоплавкого припоя. В обычных модулях температура плавления припоя составляет 150 градусов. В модулях тугоплавких, припой начинает плавиться при температуре 300 градусов.

Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, — появлению разности температур, когда протекает электрический ток.

Как оптимизировать работу холодильной машины на элементах Пельтье

На рисунках представлены графики величин, влияющих на КПД элементов Пельтье. Первое, что бросается в глаза – коэффициент термо-ЭДС стремится к нулю по мере роста концентрации носителей заряда. Это напоминает, что металлы не считаются лучшим материалом для создания термопар. Теплопроводность, напротив, возрастает. В термодинамике считается, что она слагается из двух компонентов:

  1. Теплопроводность кристаллической решётки.
  2. Теплопроводность электронная. Указанная составляющая по очевидным причинам зависит от концентрации свободных носителей заряда и обусловливает рост кривой на представленном графике. Теплопроводность кристаллической решётки остаётся практически постоянной.

Исследователей интересует произведение квадрата коэффициента термо-ЭДС на электропроводность. Упомянутая величина стоит в числителе выражения для холодильного коэффициента. Согласно данным, экстремум наблюдается при концентрации свободных носителей в районе 10 в 19 степени единиц на кубический сантиметр. Это на три порядка меньше, чем отмечается в чистых металлах, откуда прямо следует заключение, что идеальным материалом для элементов Пельтье станут полупроводники.

Доля второй компоненты уже сравнительно невелика в меньшую сторону по оси абсцисс, допускается брать и материалы из этого интервала. Электропроводность диэлектриков слишком мала, что объясняет невозможность их применения в данном контексте. Все это позволяет установить причину, почему выводы Альтенкирха не воспринимаются всерьёз.

Что такое принцип Пельтье

Данный принцип был открыт почти 200 лет назад французом Жаном Пельтье, который обнаружил, что при протекании I по разнородным проводам происходит процесс выделения тепла, а при смене полярности – охлаждения, при этом наибольшее проявление подобного эффекта наблюдалось у полупроводниковых материалов. Причем тогда же была замечена обратимость процесса, при которой при возможности поддержании разных температур на проводах в месте контакта, в них фиксировалось появление электрического тока. Данный эффект также был очень важен и получил название эффекта Зеебека.

Чтобы попытаться объяснить данный эффект с точки зрения физики процесса, необходимо обратиться к классической теории электротехники и движению электротока в зависимости от разности потенциалов. При прикосновении двух разнородных проводов неизбежно возникает разность потенциалов U, создающая определенное поле. Таким образом, если по проводу пропустить I, то созданное разностью U поле будет или способствовать протеканию тока, или являться препятствием к этому.

Если полярность поля и тока противоположны, то необходимо найти дополнительную энергию, способствующую протеканию I, за счет чего контакт будет греться. Если поле и I однонаправлены, то ток поддерживается самим полем. Для этого требуется энергия, забираемая у вещества, что и вызывает охлаждение контакта. Таким образом, то количество тепла, которое выделяется или забирается при прохождении I, будет прямо пропорционально величине заряда, проходящего через место соединения проводников и рассчитывается как произведение I на время его прохождения.

Данное произведение называется коэффициентом Пельтье, величина которого зависит от материала и температур проводников, соприкасающихся между собой.

Если ранее эффект Пельтье не нашел себе широкого применения за неимением необходимых материалов, то на сегодняшний день, с учетом развития новых технологий, найдены типы проводников, которые способны обеспечить максимальный термоэлектрический эффект.

Элемент пельтье своими руками

Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.

Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:

  1. Компактность, удобство установки на самодельное электронное плато.
  2. Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
  3. Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.

Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.

Рассмотрим на примере схем, как сделать пельтье своими руками:

  • Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
  • Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).

Рисунок 1. Элемент пельтье своими руками: универсальная схема

Далее стоит следовать простой инструкции, как сделать пельтье своими руками:

  1. Подать на вход получившегося преобразователя напряжение диапазоном 0.8-5.5В, чтобы иметь на выходе стабильные 5В.
  2. При использовании устройства обычного типа — поставить лимит температуры нагреваемой стороны в 150 градусов.
  3. Для калибровки — в качестве источника тепла использовать емкость с кипящей водой, которая точно не нагреется свыше 100 градусов.

Описание технологии и принцип действия

Способ работы термоэлектрического охладителя достаточно прост. Эффект пельтье своими руками основывается на контакте двух проводников тока, обладающих разным уровнем энергии электронов в зоне своей проводимости.

Рисунок 2. Принцип действия элемента

При подаче электротока через такую связь, электрон приобретает высокую энергию, позволяющую ему перейти в более высокоэнергетическую зону проводимости второго полупроводника. Когда эта энергия поглощается, происходит остуживание места охлаждения проводников (рисунок 2).

При протекании процесса в обратном направлении — реакция приводит к нагреванию контактного места и обычному тепловому эффекту.

Посмотрев пельтье своими руками видео, можно сделать определенные выводы о принципе его действия:

  1. Величина подаваемого тока будет пропорциональной степени охлаждения — если с одной стороны модуля сделать хороший теплоотвод, при использовании радиаторных схем, его холодная сторона обеспечит максимально низкую температуру.
  2. При смене полярности тока — нагревающая и охлаждающая плоскости меняются метами.
  3. При контакте объекта с металлической поверхностью, он становится настолько мал, что его нельзя увидеть на фоне омического нагрева, других эффектов теплопроводности, поэтому на практике применяют два полупроводника.
  4. Благодаря разнообразному количеству термопар — от 1 до 100, можно добиться практически любого показателя холодильных мощностей.

Технические характеристики элемента пельтье

Компонент получил широкое применение в различных холодильных схемах.

Что неудивительно, так как пельтье своими руками имеет следующие технические характеристики:

  1. Способен достигнуть низких температур, что служит отличным решением для охлаждения электрических приборов и тех оборудования, подвергающегося нагреву.
  2. Прекрасно выполняет работу обычного куллера, что делает возможным его установку в современные звуковые и акустические системы.
  3. Абсолютно бесшумен — в процессе работы не издает никаких посторонних и интенсивных звуков.
  4. Обладает мощной теплоотдачей при сохранении нужной температуры на радиаторе достаточно продолжительное время.

DC или ШИМ?

Существует два режима питания / контроллера для термоэлектрических холодильников, работающих по эффекту Пельтье: постоянный ток и широтно-импульсная модуляция. Хотя во многих ситуациях ШИМ используется для управления элементами Пельтье, большинство производителей элементов Пельтье предлагают режим постоянного тока и явно не рекомендуют прямое ШИМ-управление элементами Пельтье.

Сообщается, что элементы Пельтье, управляемые ШИМ, всегда менее эффективны, чем приложения, управляемые постоянным током. Другая проблема с режимом ШИМ – электромагнитные помехи (EMI) в проводке к элементу.

Некоторые эксперты рекомендуют использовать ШИМ с LC-фильтром для получения чистого тока привода на более высоких частотах, в то время как другие предпочитают сравнительно простой режим постоянного тока. В любом случае, согласно документации, важно, чтобы ток привода был постоянным и плавным, с очень низким уровнем пульсаций и шума для достижения хорошей стабильности. Рябь снижает охлаждающую способность элемента Пельтье

Краткая история открытия и обоснование физики работы

В основе работы элемента Пельтье находится физический принцип прохождения тока через две соприкасающиеся пластины, изготовленные из материалов с различными уровнями энергии тока прохождения, или другими словами — полупроводниками отличающихся типов. В месте их соединения будет наблюдаться нагрев при подаче тока в одну сторону, и понижение температуры при движении его в обратную.

Открыт эффект был еще в 18 веке Жан-Шарлем Пельтье, который получил его случайно, соединив контакты из висмута и сурьмы от источника тока. Капля воды, находящаяся в точке соприкосновения, превратилась в лед, что и вызвало интерес исследователя. Практическое применение открытие не получило по причине слабой распространенности электротехники в указанный период времени. Вспомнили о нем уже позднее, в век развития микроэлектроники, компонентам которой нужно было миниатюрное охлаждение, желательно без жидкостей и подвижных частей (насосов, вентиляторов и прочих).

Продаваемые сборки элементов Пельтье:

Элемент Пельтье можно создать не только из полупроводников. Но, к сожалению, эффект от использования различных проводящих металлов будет ниже, и практически полностью потеряется за счёт нагревания их в месте соприкосновения и общей теплопроводности материала.

Внутреннее устройство элемента Пельтье:

В общем виде конструкция выглядит как набор электродов кубической формы, изготовленных из полупроводников n- и p-типа. Каждый из них соединен с противоположными проводящими контактами, а все указанные пары соединены между собой последовательно. Причем расположение элементов выполняется так, чтобы связующие металлы между сборками полупроводников одного типа, соприкасались с первой стороной устройства в общем, а второго с противоположной. Сами p- и n- кубы зачастую изготавливаются из теллурида висмута и сплава кремния с германием. Соединительные контакты обычно из меди, алюминия или железа. Здесь главное требование — хорошая теплопроводность. Количество же пар в одной конструкции не ограничивается, и чем их больше, тем эффективнее работает элемент Пельтье. При подаче напряжения на сборку одна ее сторона нагревается, вторая охлаждается.

Принципиальная схема соединений в элементе Пельтье:

Годом нахождения обратного эффекта, выражающегося в выработке тока при охлаждении и нагреве соединенных проводников из разных металлов, принято считать 1821. Открытие было сделано Т. И. Зеебеком, который уже на следующий год опубликовал его в статье, предназначенной для Прусской академии наук, с названием «К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур».

Хотя согласно его работе, система генерации действует не только при использовании полупроводников, с ними ее КПД намного выше.

Элемент Пельтье, предназначенный целям генерации тока:

Осушитель воздуха Пельтье своими руками из старого холодильника

Материалы:

  • кусок оргстекла, размером 500х600 мм;
  • герметик, к примеру, на основе силикона;
  • бытовой вентилятор, мощность которого составляет 100 Вт;
  • 10 штук саморезов;
  • шланг для слива жидкости;
  • 2 силиконовые прокладки;
  • 2 гайки;
  • втулка.

Дверца морозильной камеры снимается, так как она не потребуется при монтаже конструкции. Вентилятор врезается внутрь оргстекла таким образом, чтобы он обеспечивал поступление воздуха внутрь старой морозильной камеры. Для выполнения такой работы следует проделать в оргстекле отверстие требуемого диаметра, в котором фиксируется с помощью саморезов вентилятор. Стыка и отверстия для создания прочности та герметичности заделываются силиконовым клеем.

Снизу конструкции проделывается отверстие и вставляется шланг для слива отработанной жидкости. Отверстие в обязательном порядке уплотняется герметиком. Свободный конец трубки выводится в емкость, куда и будет стекать отработанная жидкость. На место дверцы устанавливается оргстекло с вмонтированным вентилятором. Данная конструкция, естественно, не будет иметь достойного эстетического внешнего вида, но свои функции будет выполнять безукоризненно. К примеру, данный осушитель своими руками способен снизить влажность в помещении на 8% за одни сутки, притом температура на входе – 14 градусов, а на выходе – 9 градусов.

Осушитель воздуха позволяет создать в помещении необходимые показатели влажности. Простые устройства создают благотворный микроклимат в комнате и не позволяют развиваться в ней плесени и грибкам.

https://www.youtube.com/watch?v=EKXWUSMpHaE

Развитие теории охлаждения

Ошибочность выводов немецкого учёного подтверждена позже, в чем немалая роль отводится лаборатории полупроводников Академии наук СССР. К 1950 году создана стройная теория, позволившая в течение последующего ряда лет создать первый электротермический холодильник. При сравнительно небольшом КПД в 20% прибор понижал температуру на 24 градуса, чего в большинстве случаев хватало для бытовых целей. Годами позже разница температур уже составляла 60 градусов.

В физике 50-х годов элемент Пельтье рассматривался как холодильная машина с электронным газом вместо фреона. Сообразно этому велось рассмотрение системы. Основной параметр – холодильный коэффициент, отношение количества тепла, забираемого в единицу времени к мощности, которая на это затрачивается. У современных фреоновых кондиционеров и холодильников цифра превышает единицу. В 50-х годах для элемента Пельтье едва достигала 20%.

Расшифровка маркировок

Все термомодули имеют специальную маркировку, содержащую несколько букв и цифр. Данное обозначение легко расшифровывается:

  • первые две буквы всегда одинаковы – TE, они указывают на то, что это термоэлемент;
  • следующая буква обозначает размер: C – стандартный и S – маленький;
  • цифра, стоящая перед дефисом, показывает, сколько слоев в данном модуле;
  • первые три цифры после дефиса обозначают количество термопар;
  • последние две цифры несут информацию о величине номинального тока в Амперах.

Рассмотрим расшифровку на конкретном примере. На фото представлен термоэлемент стандартного размера с одним каскадом (слоем). Устройство имеет 127 термопар. А величина номинального тока равна 6 Амперам.

Чип TEC и базовый тест

Перед тем, как начать фактическую конструкцию с микросхемой ТЕС, проверьте ее на исправность. Для этого просто подключите красный (+) и черный (-) провода микросхемы TEC (TEC1-12706) к лабораторному источнику питания 1,5 В постоянного тока и оставьте источник питания включенным на 10–30 секунд. После этого вы можете проверить чип TEC, используя кончик пальца или цифровой термометр, чтобы убедиться, что одна сторона чипа горячая, а другая сторона холодная. Просто отметьте горячие и холодные поверхности микросхемы TEC (например, буквами H и C), используя любую постоянную маркерную ручку.

Рис. 2: Тестирование чипа TEC

Применение

Даже учитывая невысокий коэффициент эффективности, пластины в модуле Пельтье широко применяются в измерительных, вычислительных приборах, а также в переносной бытовой технике. Приведем перечень устройств, в которых модели являются неотъемлемой частью:

  • переносные холодильные устройства;
  • небольшие генераторы электричества;
  • комплексы охлаждения в ПК и ноутбуках;
  • кулеры для подогрева и охлаждения питьевой воды;
  • осушители воздуха.

Как подключить

Подключить модуль Пельтье можно самостоятельно, это не потребует много времени и усилий. На контакты выходов требуется подать постоянное напряжение, которое указано в инструкции по эксплуатации прибора. Красный провод подсоединяется к плюсу, а черный – к минусу

Обратите внимание, что при изменении полярности поменяются местами нагреваемая и охлаждаемая поверхности

Перед подключением рекомендуется проверить работоспособность элемента. Одним из простых и надежных способов, как проверить устройство, является тактильный метод: для этого необходимо подсоединить устройство к источнику электротока и прикоснуться к разным контактам. У нормально функционирующего устройства одни контакты будут теплыми, а другие – охлажденными.

Также можно выполнить проверку при помощи мультиметра и зажигалки. Для этого нужно подсоединить щупы в контактам устройства, поднести зажигалку к одной стороне и наблюдать за показаниями мультиметра. Если элемент Пельтье работает в стандартном режиме, в процессе нагрева на одной стороне будет вырабатываться электроток, а данные о напряжении отобразятся на экране мультиметра.

Как сделать элемент пельтье своими руками

Элемент Пельтье нецелесообразно изготовлять в домашних условиях в связи с небольшой стоимостью и необходимостью специальных знаний для создания работоспособного элемента. Однако своими руками можно собрать эффективный мобильный термоэлектрический генератор, который пригодится на даче или в туристическом походе.

С целью стабилизации электрического напряжения потребуется собрать самостоятельно стандартный преобразователь на микросхеме ИМС L6920. На вход устройства необходимо подать напряжение 0,8-5,5 В, а на выходе он будет выдавать 5 В, этого значения достаточно для зарядки аккумулятора мобильных устройств в стандартном режиме. Если применяется стандартное электронное устройство Пельтье, тогда потребуется ограничение предельного значения температуры нагреваемой поверхности до 150 градусов. Для простоты контроля температуры целесообразно применять котелок с кипящей водой, тогда модель не будет нагреваться свыше 100 градусов.

Пластины Пельтье широко используются с целью охлаждения современной бытовой техники, в кондиционерах, эффективность устройства доказали в частности для стабилизации теплового режима и  охлаждения мощного процессора. На основе элемента Пельтье часто изготовляются в домашних условиях эффективные мобильные холодильники для дачи или автомобиля, питания радиатора. В силу обратимости процесса, самодельные элементы используются в роли мобильных небольших электростанций в местностях без источника электроэнергии.

Что такое термостат и какой у него принцип работы

Как сделать реле времени своими руками?

Что такое генератор водорода и как его сделать своими руками

Принцип работы и схема подключения теплового реле

Что такое дроссель?

Что такое амперметр и как им проводить измерения?

Принцип действия элемента Пельтье

В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Современный элемент Пельтье  представляет собой конструкцию из двух пластин-изоляторов (как правило керамических.). Между этими пластинами-изоляторами находится одна или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твёрдого раствора SiGe), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой.

Устройство модульного элемента ПельтеА — контакты для подключенияB — горячая поверхностьC — холодная сторонаD — медные проводникиE — полупроводник p-типаF — полупроводник n-типа

Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n-p), а снизу — противоположные (p-n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются… или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Соединение полупроводниковых элементов ПельтьеA- горячая сторона,  B — холодная сторона

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

В батареях элементов Пельтье возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, т.к. это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.

Маркировка элементов Пельтье

Маркировка элемента Пельтье разделена на три группы

  1. Обозначение элемента. Первые две буквы всегда «TE». После них идёт буква «C» (стандартный размер) или «S» — малый размер.Далее идёт цифра, указывающая сколько слоёв в элементе.
  2. Количество термопар в элементе.
  3. Величина номинального тока, в амперах.

Вот пример расшифровки маркировки элемента Пельтье

Пример расшифровки маркировки элемента Пельтье1- элемента Пельтье стандартного размера с 1 слоем элементов2 — содержит 127 термопар3 — номинальный ток 6 А

Иногда может быть четвёртая группа, указывающая на размеры модуля. Например, «40» указывает что элемент имеет размер 40х40 мм.

Технические параметры элементов Пельтье

Главными параметрами у элементов Пельтье являются:

  • Qmax – производительность холода. Данный параметр рассчитывается из максимального тока и разности температур между противолежащими обкладками модуля Пельтье
  • DTmax – максимальный температурный перепад между сторонами элемента Пельтье в идеальных условиях
  • Imax – ток, при котором перепад температур достигает своего максимума
  • Umax — предельное напряжение, при котором перепад температур достигает своего максимума
  • Resistence (RES) – сопротивление внутренних элементов изделия
  • КПД (COP) — данный показатель у самых лучших модулей едва дотягивается до 50 %. Но чаще всего встречаются элементы КПД от 20% до 30%.

Выводы по конструктиву самодельного холодильника

Остальные выводы читатели сделают самостоятельно: самодельный холодильник даст 2 градуса тепла по шкале Цельсия, если снабдить прибор тремя элементами Пельтье с кулерами. Опыт допустимо обобщать, подбирать оптимальную изоляцию, варьировать условия. К примеру, кулеры убрать, чтобы не шумели и не тратили энергию. Это упростит конструкцию. Но хотим охладить пыл изобретателей: в настоящих, не самодельных холодильниках, используются два вентилятора, для холодного и горячего контура. Экспериментируйте.

Устройство холодильника вытерпит компьютерный блок питания. Вспомните, сколько потребляет процессор! Элемент Пельтье далеко не главное внутри. Вольтаж уже заранее приспособлен, не придется искать редких деталей. Покупаете три элемента Пельтье, чтобы самостоятельно сделать холодильник, берете блок питания из старенького ПК, сооружаете коробку с двумя кулерами, получаете готовый продукт. Причем способный работать от автомобильного аккумулятора.

Принцип действия холодильника настолько очевиден, что понятен детям. При изменении направления тока элементы Пельтье работают на нагрев. Хорошо иметь рядом теплую пищу, когда вокруг нет подогревательного устройства. В последнем случае закон работает в обратную сторону. Три элемента Пельтье внутри самодельного холодильника обеспечат температуру на 18 ºС выше окружающей среды. Если в машине 25, в коробке покажет 43. Достаточно, чтобы перекусить и не жаловаться. Получается уже два прибора в одном лице.

Хотим сказать спасибо автору видео на Ютуб за великолепную идею, как сделать холодильник самостоятельно. Пусть задумка не слишком удалась, но лишь потому, что объем велик. Элементы Пельтье процессорные не настолько мощные, чтобы в одиночку одолеть большой объем, до конца не оформленный.