Просто о сложном: все о кипении воды в чайнике, температуре и других нюансах процесса

Оглавление

Как выглядит кипящая H2O?

Как узнать, что вода начала кипеть? Во время закипания воды ее поверхность начинает покрываться все большим количеством пузырьков.

При более долгом нахождении на источнике тепла этот процесс становится более бурным. Пузырьки начинают все более увеличиваться в размерах, это сопровождается бурлением поверхности.

Интересный факт: даже если вода будет находиться на огне в состоянии кипения в течение долгого времени, она будет выкипать, пока полностью не испарится. При этом ее температура не увеличится.

H2O, которая была доведена до кипения и сразу снята с огня, не всегда будет считаться безопасной для потребления. Чтобы избавиться от вредных микроорганизмов, емкость с кипящей водой следует держать на огне в течение 10 минут. Только после этого можно быть уверенным в ее стерильности.

В чайнике

Вода, находящаяся в чайнике на огне или плитке, по мере нагревания начинает издавать характерное потрескивание, которое сменяется шипением. На смену ему приходит слабый шум, сопровождающийся выделением пара через носик чайника. Это говорит о том, что вода закипела.

Воду сразу снимать с огня не следует, для стерилизации ее необходимо кипятить 10-15 минут. После этого чайник можно убрать с плиты.

В кастрюле

Кастрюля, в отличие от чайника, более удобна в плане наблюдения за процессом закипания. Здесь своими глазами возможно увидеть все стадии кипения:

  • легкое подрагивание – за счет образования на дне мелких пузырьков;
  • закипание – пузырьки начинают понемногу двигаться кверху, образуя струйки, и пока их совсем немного;
  • медленное кипение – пузырьки продолжают подниматься к поверхности и увеличиваются в своих размерах;
  • бурное кипение – в большом объеме выделяется пар, бурление воды интенсивное и не прекращающееся при помешивании.

Как понять, что жидкость кипит?

По мере приближения к точке кипения в воде появляется все больше пузырьков. Сначала их можно увидеть на стенках сосуда, а потом они начинают всплывать на поверхность, отчего она становится неровной. Пропустить этот момент сложно из-за характерного бурления.

Присмотревшись, над поверхностью воды можно будет увидеть поднимающийся пар. Если нет цели заставить воду выкипать, стоит снять её с плиты.

Даже спустя некоторое время после этого испарение будет продолжаться, потому что температура не сразу опустится ниже точки кипения. Например, от чашки горячего чая еще некоторое время идет пар.

Свойства испарения

Экспериментально установлены следующие cвойства испарения:

  1. При одинаковых условиях различные вещества испаряются с различной скоростью (скорость испарения определяется числом молекул, переходящих в пар с поверхности вещества за 1 с).
  2. Скорость испарения тем больше:
    1. чем больше площадь свободной поверхности жидкости;
    2. чем меньше плотность паров над поверхностью жидкости. Скорость увеличивается при движении окружающего воздуха (ветер);
    3. чем больше температура жидкости.
  3. При испарении температура тела понижается.

Механизм испарения можно объяснить с точки зрения MKT: молекулы, находящиеся на поверхности, удерживаются силами притяжения со стороны других молекул вещества. Молекула может вылететь за пределы жидкости лишь тогда, когда ее кинетическая энергия превышает значение той работы, которую необходимо совершить, чтобы преодолеть силы молекулярного притяжения (работа выхода). Поэтому покинуть вещество могут только быстрые молекулы. В результате средняя кинетическая энергия оставшихся молекул уменьшается, а температура жидкости понижается. Для того, чтобы поддерживать температуры испаряющейся жидкости неизменной, к ней необходимо подводить некоторое количество теплоты.

Молекулы пара хаотически движутся. Поэтому некоторые из них могут снова возвратиться в жидкость. Процесс перехода вещества из газообразного состояния в жидкое называется конденсацией.

Число возвратившихся в жидкость за определенный промежуток времени молекул тем больше, чем больше концентрация молекул пара, а следовательно, чем больше давление пара над жидкостью. Конденсация пара сопровождается нагреванием жидкости. При конденсации выделяется такое же количество теплоты, которое было затрачено при испарении.

Кипение жидкостей

Кипение — это парообразование, происходящее одновременно и с поверхности, и по всему объему жидкости. Оно состоит в том, что всплывают и лопаются многочисленные пузырьки, вызывая характерное бурление.

Как показывает опыт, кипение жидкости при заданном внешнем давлении начинается при вполне определенной и не изменяющейся в процессе кипения температуре и может происходить только при подводе энергии извне в результате теплообмена (рис. 3):

\(~Q = L \cdot m,\)

где L — удельная теплота парообразования при температуре кипения.

Рис. 3

Механизм кипения: в жидкости всегда имеется растворенный газ, степень растворения которого понижается с ростом температуры. Кроме того, на стенках сосуда имеется адсорбированный газ. При нагревании жидкости снизу (рис. 4) газ начинает выделяться в виде пузырьков у стенок сосуда. В эти пузырьки происходит испарение жидкости. Поэтому в них, кроме воздуха, находится насыщенный пар, давление которого с ростом температуры быстро увеличивается, и пузырьки растут в объеме, а следовательно, увеличиваются действующие на них силы Архимеда. Когда выталкивающая сила станет больше силы тяжести пузырька, он начинает всплывать. Но пока жидкость не будет равномерно прогрета, по мере всплытия объем пузырька уменьшается (давление насыщенного пара уменьшается с понижением температуры) и, не достигнув свободной поверхности, пузырьки исчезают (захлопываются) (рис. 4, а), вот почему мы слышим характерный шум перед закипанием. Когда температура жидкости выравняется, объем пузырька при подъеме будет возрастать, так как давление насыщенного пара не изменяется, а внешнее давление на пузырек, представляющее собой сумму гидростатического давления жидкости, находящейся над пузырьком, и атмосферного, уменьшается. Пузырек достигает свободной поверхности жидкости, лопается, и насыщенный пар выходит наружу (рис. 4, б) — жидкость закипает. Давление насыщенного пара при этом в пузырьках практически равно внешнему давлению.

Рис. 4

Температура, при которой давление насыщенного пара жидкости равно внешнему давлению на ее свободную поверхность, называется температурой кипения жидкости.

Так как давление насыщенного пара увеличивается с ростом температуры, а при кипении оно должно быть равно внешнему, то при увеличении внешнего давления температура кипения увеличивается.

Температура кипения зависит также от наличия примесей, обычно увеличиваясь с ростом концентрации примесей.

Если предварительно освободить жидкость от растворенного в ней газа, то ее можно перегреть, т.е. нагреть выше температуры кипения. Это неустойчивое состояние жидкости. Достаточно небольших сотрясений и жидкость закипает, а ее температура сразу понижается до температуры кипения.

С чего начинается кипение?

Кипение – это процесс перехода воды из жидкого состояния в газообразное.

Для получения кипятка потребуется источник тепла. Это может быть разогретая плита или открытое пламя.

Из спокойного состояния поверхность жидкости переходит в более подвижное. Если посуда прозрачная, можно заметить появление парового налета. Он находится над поверхностью воды.

Как определить, что вода начинает кипеть, когда это происходит? Процесс кипения начинается тогда, когда давление пара, вырабатываемого над поверхностью воды, становится равным внешнему давлению.

Каждое вещество имеет свою температуру при закипании

Однако, из этого правила существует исключение. Если атмосферное давление в окружающей среде ниже среднего (т.е. 760 мм ртутного столба), то кипение может начаться при более низкой температуре. Чтобы вскипятить воду на высоте 4500-5000 метров над уровнем моря, достаточно нагреть ее до 83 градусов.

В лабораторных условиях ученые добились закипания при температуре замерзания. Для этого пришлось понизить уровень атмосферного давления до 4,5 мм ртутного столба.

Температура и давление насыщения

Демонстрация нижней точки кипения воды при более низком давлении, достигаемой с помощью вакуумного насоса .

Насыщенная жидкость содержит столько же тепловую энергию , как это может без кипения (или , наоборот, насыщенный пар содержит как мало тепловую энергию , как это может без конденсации ).

Температура насыщения означает температуру кипения . Температура насыщения — это температура для соответствующего давления насыщения, при котором жидкость переходит в свою паровую фазу . Можно сказать, что жидкость насыщена тепловой энергией . Любое добавление тепловой энергии приводит к фазовому переходу .

Если давление в системе остается постоянным ( изобарическим ), пар при температуре насыщения начинает конденсироваться в жидкую фазу по мере удаления тепловой энергии ( тепла ). Точно так же жидкость при температуре и давлении насыщения будет кипеть в свою паровую фазу при приложении дополнительной тепловой энергии.

Точка кипения соответствует температуре, при которой давление пара жидкости равно давлению окружающей среды. Таким образом, температура кипения зависит от давления. Точки кипения могут быть опубликованы относительно NIST, стандартного давления США 101,325 кПа (или 1 атм ) или стандартного давления IUPAC 100000 кПа. На больших высотах, где атмосферное давление намного ниже, температура кипения также ниже. Температура кипения увеличивается с повышением давления до критической точки , когда свойства газа и жидкости становятся идентичными. Температура кипения не может быть выше критической. Точно так же точка кипения снижается с понижением давления до тех пор, пока не будет достигнута тройная точка . Точка кипения не может быть понижена ниже тройной точки.

Если известна теплота парообразования и давление пара жидкости при определенной температуре, точку кипения можно рассчитать с помощью уравнения Клаузиуса-Клапейрона , таким образом:

ТBзнак равно(1Т-рпер⁡ппΔЧАСvap)-1{\ displaystyle T _ {\ text {B}} = \ left ({\ frac {1} {T_ {0}}} — {\ frac {R \, \ ln {\ frac {P} {P_ {0}}) }} {\ Delta H _ {\ text {vap}}}} \ right) ^ {- 1}}

куда:

ТB{\ displaystyle T_ {B}} — температура кипения при интересующем давлении,
р{\ displaystyle R}- постоянная идеального газа ,
п{\ displaystyle P}- давление пара жидкости при интересующем давлении,
п{\ displaystyle P_ {0}}- некоторое давление, соответствующее известному (обычно данные доступны при 1 атм или 100 кПа),Т{\ displaystyle T_ {0}}
ΔЧАСvap{\ displaystyle \ Delta H _ {\ text {vap}}}- теплота испарения жидкости,
Т{\ displaystyle T_ {0}} температура кипения,
пер{\ displaystyle \ ln}это натуральный логарифм .

Давление насыщения — это давление для соответствующей температуры насыщения, при которой жидкость переходит в паровую фазу. Давление насыщения и температура насыщения имеют прямую взаимосвязь: с увеличением давления насыщения увеличивается и температура насыщения.

Если температура в системе остается постоянной ( изотермическая система), пар при давлении насыщения и температуре начнет конденсироваться в жидкую фазу по мере увеличения давления в системе. Аналогичным образом , жидкость под давлением насыщения и температурой будет иметь тенденцию мигать в его парообразной фазе при уменьшении давления в системе.

Есть два соглашения относительно стандартной точки кипения воды : Нормальная точка кипения составляет 99,97  ° C (211,9  ° F ) при давлении 1 атм (т.е. 101,325 кПа). Рекомендуемая ИЮПАК стандартная температура кипения воды при стандартном давлении 100 кПа (1 бар) составляет 99,61  ° C (211,3  ° F ). Для сравнения, на вершине Эвереста , на высоте 8 848 м (29 029 футов), давление составляет около 34  кПа (255  торр ), а температура кипения воды составляет 71  ° C (160  ° F ). Температурная шкала Цельсия определялась до 1954 года двумя точками: 0 ° C определялось точкой замерзания воды и 100 ° C определялось точкой кипения воды при стандартном атмосферном давлении.

Как улетучивается жидкость

Молекулы жидкости расположены друг к другу практически впритык, и, несмотря на то, что связаны между собой силами притяжения, к определённым точкам не привязаны, а потому свободно перемещаются по всей площади вещества (они постоянно сталкиваются друг с другом и изменяют свою скорость).

Частицы, что уходят на поверхность, набирают во время движения темп, достаточный для того, чтобы покинуть вещество. Оказавшись наверху, своё движение они не останавливают и, преодолев притяжение нижних частиц, вылетают из воды, преобразовываясь в пар. При этом часть молекул из-за хаотического движения возвращается в жидкость, остальные уходят дальше, в атмосферу.

Цветные озера вулкана Келимуту

Если речь идёт, например, о круговороте воды в природе, можно наблюдать за процессом конденсации, когда пар, сконцентрировавшись, при определённых условиях возвращается назад. Таким образом, испарение и конденсация в природе тесно связаны между собой, поскольку благодаря им осуществляется постоянный водообмен между землёй, сушей и атмосферой, благодаря чему окружающая среда снабжается огромным количеством полезных веществ.

Стоит заметить, что интенсивность испарения у каждого вещества различна, а потому основными физическими характеристиками, которые влияют на скорость испарения, являются:

  1. Плотность. Чем вещество плотнее, тем ближе молекулы находятся по отношению друг к другу, тем труднее верхним частицам преодолеть силу притяжения других атомов, следовательно, испарение жидкости происходит медленнее. Например, метиловый спирт улетучивается намного быстрее воды (метиловый спирт – 0,79 г/см3, вода – 0,99 г/см3).
  2. Температура. На скорость испарения также влияет теплота испарения. Несмотря на то, что процесс испарения происходит даже при минусовой температуре, чем больше температура вещества, тем выше теплота испарения, значит, тем быстрее двигаются частицы, которые, увеличивая интенсивность испарения, массово покидают жидкость (поэтому кипящая вода испаряется быстрее холодной).Из-за потери быстрых молекул внутренняя энергия жидкости уменьшается, а потому температура вещества во время испарения понижается. Если жидкость в это время будет находиться возле источника тепла или непосредственно нагреваться, её температура снижаться не будет, так же, как и не снизится интенсивность испарения.
  3. Площадь поверхности. Чем большую площадь поверхности занимает жидкость, тем больше молекул с неё улетучивается, тем выше скорость испарения. Например, если влить воду в кувшин с узким горлышком, жидкость будет исчезать очень медленно, поскольку испаряемые частицы начнут оседать на сужающихся стенках и спускаться. В то же время, если налить воду в миску, молекулы будут беспрепятственно уходить с поверхности жидкости, поскольку им будет не на чем конденсироваться, дабы вернуться в воду.
  4. Ветер. Процесс испарения окажется намного быстрее, если над ёмкостью, в которой находится вода, движется воздух. Чем быстрее он это делает, тем скорость испарения больше. Нельзя не учитывать взаимодействие ветра с испарением и конденсацией.Молекулы воды, поднимаясь с океанической поверхности, частично возвращаются назад, но большая часть высоко в небе конденсируется и образует облака, которые ветер перегоняет на сушу, где капли выпадают в виде дождя и, проникнув в грунт, через какое-то время возвращаются в океан, снабжая растущую в почве растительность влагой и растворёнными минеральными веществами.

Как будет меняться температура кипения воды: 4 фактора

Температура, при которой кипит жидкость, называется температурой кипения.

Стоит отметить, что она всегда остается неизменной. Поэтому, если увеличить огонь под кипящей кастрюлей с водой, выкипать будет быстрее, но температура при этом не увеличится, так как средняя кинетическая энергия молекул остаётся неизменной.

Рассмотрим 4 фактора, которые влияют на изменение t°:

  1. Пониженное атмосферное давление (наблюдается в горной местности) – t° уменьшается.
  2. Повышенное атмосферное давление (наблюдается в шахте) – t° наоборот увеличивается.
  3. Применения герметической крышки, вакуума. За счёт герметической крышки или посуды пар не выходит градус кипения увеличивается. При использовании вакуума температура зависит от давления, которое создано внутри его.
  4. Свойства воды. Соленая вода начинает кипеть при более высокой температуре, чем пресная.

Рассмотрим более подробно каждый из факторов.

Влияние атмосферного давления

Согласно исследованиям и уравнению Клапейрона — Клаузиуса, градус кипения напрямую зависит от атмосферного давления. С его ростом температура кипения увеличивается, а с уменьшением, наоборот, становится все ниже и ниже.

Атмосферное давление — это давление атмосферы, действующее на все находящиеся на ней предметы и земную поверхность. Оно может меняться в зависимости от места и времени и измеряется барометром.

Таблица № 1. «Температура кипения воды от давления».

Р, кПа t, °C Р, кПа t, °C Р, кПа t, °C
5,0 32,88 91,5 97,17 101,325 100,00
10,0 45,82 92,0 97,32 101,5 100,05
15,0 53,98 92,5 97,47 102,0 100,19
20,0 60,07 93,0 97,62 102,5 100,32
25,0 64,98 93,5 97,76 103,0 100,46
30,0 69,11 94,0 97,91 103,5 100,60
35,0 72,70 94,5 98,06 104,0 100,73
40,0 75,88 95,0 98,21 104,5 100,87
45,0 78,74 95,5 98,35 105,0 101,00
50,0 81,34 96,0 98,50 105,5 101,14
55,0 83,73 96,5 98,64 106,0 101,27
60,0 85,95 97,0 98,78 106,5 101,40
65,0 88,02 97,5 98,93 107,0 101,54
70,0 89,96 98,0 99,07 107,5 101,67
75,0 91,78 98,5 99,21 108,0 101,80
80,0 93,51 99,0 99,35 108,5 101,93
85,0 95, 15 99,5 99,49 109,0 102,06
90,0 96,71 100,0 99,63 109,5 102,19
90,5 96,87 100,5 99,77 110,0 102,32
91,0 97, 02 101,0 99,91 115,0 103,59

Единицы измерения давления в таблице: кПа.

Нормальное атмосферное давление составляет 765 мм. РТ. Ст. = 101,325 Р, кПа

Температура кипения в горах

При подъеме над поверхностью Земли (в горах), температура кипения воды падает, так как снижается атмосферное давление (на каждые 10, 5 м на 1 мм РТ. С). Пузырькам легче всплывать –  процесс происходит быстрее.

Поэтому высоко в горах альпинисты не могут приготовить нормальную пищу, а используют законсервированные продукты.

Для варки мяса, как и других продуктов, нужны привычные 100  градусов. В обратном случае все компоненты бульона просто останутся сырыми.

Таблица № 2. «Как будет меняться t° кипения с высотой».

Высота над уровнем моря t° кипения
100,0
500 98,3
1000 96,7
1500 95,0
2000 93, 3
2500 91,7
3000 90,0
3500 88,3
4000 86,7
4500 85,0
5000 83,3
6000 80,0

Температура кипения воды в шахте

Если спуститься в шахту, то давление будет увеличиваться.

Температура кипения воды в шахте зависит от глубины (при спуске на 300 м вода закипит при t 101°C, при глубине 600 метров -102 °C

Применение герметической крышки

Герметичные крышки не позволяет образовавшемуся пару ускользнуть. В среднем температура закипания воды увеличивается от 5-20 градусов.

В хозяйстве для приготовления блюд часто используют кастрюли, сковородки с герметичной крышкой. Таким образом, уменьшается время приготовления пищи за счет высокой температуры, а блюда получаются более вкусными. В горных районах с низким давлением это необходимая вещь для приготовления пищи. Так же используют мультиварки и сотейники.

Кипячение воды в вакууме

Вакуум — это среда с газом, с пониженным давлением.

Виды вакуумов:

  1. низкий;
  2. средний;
  3. высокий;
  4. сверхвысокий;
  5. экстремальный;
  6. космическое пространство;
  7. абсолютный.

Температура кипения воды в вакууме зависит от того, какое давление в нём.

Кипение солёной воды

Солёная вода закипает при более высокой температуре за счет своих свойств.

Соль увеличивает плотность воды, соответственно на процесс требуется больше времени.

t° повышается примерно на 1 градус при добавлении 40 грамм соли на литр воды.

Температура кипения воды в чайнике

Чистая пресная вода закипает в чайнике при t° 100 градусов °C  при условиях нормального атм. давления 760 мм ртутного столба.

Водно-спиртовой раствор

Дело в том, что водка не является чистым спиртом, а представляет собой раствор воды, в котором присутствует доля спирта. В зависимости от того, какова эта доля, меняется температура замерзания.

«Разброс» значений, при которых водка подвергается кристаллизации, от -27ºС до -34ºС. Это приблизительные показатели. Чем больше этанола в водке, тем ниже будет предел, когда она сможет превратиться из жидкого алкоголя в, так сказать, «алкогольное мороженое».

Интересно следующее: процесс замерзания идет постепенно, водка загустевает, превращаясь в подобие желе, и только после этого, если температура не меняется, становится твердой. И целиком она почти никогда не замерзает.

Причина: сначала меняют свои характеристики частички воды — они становятся маленькими льдинками. Концентрация спирта в бутылке становится выше, поэтому теперь раствору требуется более низкая температура, чтобы он стал льдом.

Вряд ли в холодильнике возможно создание условий, когда градус понизится до -33 или -40. Это в быту просто технически невозможно, даже если морозильная установка исправна. Поэтому полное превращение в лед вам вряд ли доведется наблюдать, а вот куски льда в бутылке – это вполне вероятно.

От чего зависит закипание в домашних и других условиях?

Кипением называется усиленное образование пара в массе и на поверхности воды.

Однако традиционное испарение вещества происходит при любых условиях. Закипание же происходит только по достижении определенных условий – температуры и внешнего давления.

Например, для воды в нормальных условиях (760 мм. рт. ст.) этот показатель равняется 100С. С другой стороны, он легко изменяется. Кроме того, на точку кипения влияют различные, растворенные в воде примеси. В большинстве случаев это соли – естественные, придающие жесткость, либо искусственно добавленные, например, пищевая поваренная.

Отметка в 100С – приведена для дистиллированной H2O в нормальных условиях. Стандартно используемая вода – из водопровода, ручья, озера, колодца и т. д. – в действительности является водным раствором различных солей. Поэтому температура ее закипания несколько выше справочного значения. На существенных возвышенностях, ввиду падения атмосферного давления, кипение начинается раньше. Однако процесс варения – как способ приготовления пищи – не становится быстрее, а, напротив, возрастает и становится затрудненным.

Каждые 300 метров подъема от уровня моря снижают точку закипания на один градус. Альпинисты знают, что высоко в горах котелок закипает при 85-90С и даже ниже.

Противоположный эффект возникает в естественных низменностях и при росте атмосферного давления – точка кипения превышает несколько привычный показатель.

Кинетическая энергия

Кинетическая энергия нагретого водяного пара активно
используется в промышленности. В частности, на основе энергии пара работает
такое устройство как паровая турбина. Она представляет собой насаженный на вал
массивный диск, на котором закреплены лопасти. На эти лопасти поступает пар,
нагретый в паровом котле и имеющий температуру около 600 градусов. Этот пар
расширяется в сопло, происходит превращение его внутренней энергии в
кинетическую энергию направленного движения. Струя пара, обладающая большой
кинетической энергией поступает из сопло на лопасти турбины, приводя турбину во
вращение.

Примеси и смеси

В предыдущем разделе были рассмотрены температуры кипения чистых соединений. На давление паров и температуру кипения веществ может влиять присутствие растворенных примесей ( растворенных веществ ) или других смешиваемых соединений, причем степень воздействия зависит от концентрации примесей или других соединений. Присутствие нелетучих примесей, таких как соли или соединения, летучесть которых намного ниже, чем у основного компонента, снижает его мольную долю и летучесть раствора и , таким образом, повышает нормальную точку кипения пропорционально концентрации растворенных веществ. Этот эффект называется повышением точки кипения . Как распространенный пример, соленая вода кипит при более высокой температуре, чем чистая вода.

В других смесях смешивающихся соединений (компонентов) могут быть два или более компонентов с различной летучестью, каждый из которых имеет свою собственную точку кипения чистого компонента при любом заданном давлении. Присутствие других летучих компонентов в смеси влияет на давление пара и, следовательно, на точки кипения и точки росы всех компонентов в смеси. Точка росы — это температура, при которой пар конденсируется в жидкость. Кроме того, при любой заданной температуре состав пара отличается от состава жидкости в большинстве таких случаев. Чтобы проиллюстрировать эти эффекты между летучими компонентами в смеси, обычно используется диаграмма точки кипения . Дистилляция — это процесс кипения и конденсации, в котором используются различия в составе жидкой и паровой фаз.