Фазовые переходы и уравнение теплового баланса

Оглавление

Что влияет на градус замерзания

Представим, что у нас есть идеальная среда с температурой ровно 0°C – общеизвестно, что вода замерзает именно при этом градусе – и в эту среду мы помещаем кусочек льда и воду в жидком состоянии. Что произойдет? Собственно, ничего: вода не замерзнет, а лед не начнет таять. Объяснение в том, что в данной модели нет условий для фазового перехода.

Простыми словами: помимо снижения температуры до определенного градуса, на замерзание воды влияют и другие факторы. Один из них – атмосферное давление, которое создаётся гравитационным притяжением воздуха к Земле. И температура замерзания воды находится в прямой зависимости от давления.

Наличие примесей

Также, кроме давления и температуры, на замерзание воды влияет ее состав: в ней в том или ином количестве находятся органические и минеральные частицы, то есть кусочки глины, песка, пыли. Когда температура в окружающей среде снижается до необходимого градуса, вокруг этих частиц образуются кристаллы: кусочки пыли, песка, камня выполняют роль ядрового центра, вокруг которого начинается процесс кристаллизации.

А в дистиллированной (очищенной) воде процесс замерзания протекает иначе: поскольку в ней нет потенциальных ядер кристаллизации, вода может охладиться до минусовой температуры, но не замерзнуть.

Итак, время замерзания воды зависит от таких факторов:

  • атмосферное давление в окружающей среде;
  • температура воздуха;
  • количество жидкости;
  • ее химический состав;
  • в какой емкости находится H2O (или отсутствие емкости).

Количество теплоты

Как известно, при различных механических процессах происходит изменение механической энергии W. Мерой изменения механической энергии является работа сил, приложенных к системе:

\(~\Delta W = A.\)

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты — это мера изменения внутренней энергии в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны внутренней энергии. Они не характеризуют само состояние системы (как это делает внутренняя энергия), а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что

  • работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю);
  • количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Нагревание (охлаждение)

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры T1 до температуры T2, рассчитывается по формуле

\(~Q = c \cdot m \cdot (T_2 — T_1) = c \cdot m \cdot \Delta T,\)

где cудельная теплоемкость вещества (табличная величина);

\(~c = \dfrac{Q}{m \cdot \Delta T}.\)

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Кроме удельной теплоемкости рассматривают и такую величину, как теплоемкость тела.

Теплоемкость тела C численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

\(~C = \dfrac{Q}{\Delta T} = c \cdot m.\)

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Парообразование (конденсация)

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

\(~Q = L \cdot m,\)

где Lудельная теплота парообразования (табличная величина). При конденсации пара выделяется такое же количество теплоты.

Единицей удельной теплоты парообразования в СИ является джоуль на килограмм (Дж/кг).

Плавление (кристаллизация)

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

\(~Q = \lambda \cdot m,\)

где λ — удельная теплота плавления (табличная величина). При кристаллизации тела такое же количество теплоты выделяется.

Единицей удельной теплоты плавления в СИ является джоуль на килограмм (Дж/кг).

Сгорание топлива

Количество теплоты, которое выделяется при полном сгорании топлива массой m,

\(~Q = q \cdot m,\)

где q — удельная теплота сгорания (табличная величина).

Единицей удельной теплоты сгорания в СИ является джоуль на килограмм (Дж/кг).

Применение этих знаний на практике

Для специалистов-теплотехников или работников ЖКХ, любые изменения параметров потока являются серьезной проблемой.

Приходится использовать компенсаторы объема (у техников они называются расширительные баки), делать резервные линии для отведения избытков.

В природе изменения плотности также имеют свое значение. В зимнее время вода, охлаждаясь до 4°С, опускается на дно водоема, вытесняя наверх более теплые слои.

Если они охлаждаются ниже этого значения, их плотность уменьшается и не позволяет им вытеснить придонные объемы с постоянной температурой 4°С.

Это позволяет защитить водоемы от сплошного перемерзания, сохранить запасы рыбы и прочей водной живности.

Теплоемкость материалов — таблица

В строительстве очень важной характеристикой является теплоемкость строительных материалов. От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания

От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания.

Прежде, чем приступить к ознакомлению с теплоизоляционными характеристиками отдельных строительных материалов, необходимо понять, что собой представляет теплоемкость и как она определяется.

Удельная теплоемкость материалов

Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды.

Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус.

Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.

Для того, чтобы рассчитать теплоемкость того или иного материала, необходимо обладать такими данными, как:

  • вид и объем нагреваемого материала (V);
  • показатель удельной теплоемкости этого материала (Суд);
  • удельный вес (mуд);
  • начальную и конечную температуры материала.

Теплоемкость строительных материалов

Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.

А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.

Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.

Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.

Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.

Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.

Сравнительная характеристика теплоемкости основных строительных материалов

Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.

В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.

м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг. Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С.

Для выбранных условий рассчитываем теплоемкость выбранных материалов:

  1.  Стена из дерева: С=СудхmудхΔТ; Сдер=2,3х175х27=10867,5 (кДж);
  2.  Стена из бетона: С=СудхmудхΔТ; Сбет=0,84х805х27= 18257,4 (кДж);
  3.  Стена из кирпича: С=СудхmудхΔТ; Скирп=0,88х595х27= 14137,2 (кДж).

Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.

Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.

Теплоемкость и теплопроводность материалов

Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.

Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.

Чем опасен

У жидкости с увеличенной концентрацией солей железа, кальция или магния присутствует неприятный слегка соленый или горький привкус. При регулярном употреблении вкусовые рецепторы привыкают к жесткости, поэтому неудобства часто не замечают. Белый осадок в воде опасен не только для людей, но и для техники. 

Для живых организмов

Жидкость с высоким содержанием минеральных солей негативно влияет на здоровье живых существ. Регулярное потребление нерастворимых веществ провоцирует образование почечных камней и закупоривает кровеносные сосуды. Чем дольше используется вредная влага, тем разрушительней результат.

Чем опасна жесткая жидкость Источник 4.bp.blogspot.com

Присутствие белого осадка в воде негативно влияет на кожу человека. Моющие средства плохо мылятся и растворяются в воде. Компоненты закрывают поры, нарушается естественное дыхание верхних покровов. После мытья головы с волос уничтожается защитный слой, поэтому часто наблюдается:

  • перхоть;
  • зуд;
  • облысение.

Характерный скрип кожи или волос после мытья – первый признак нарушения. Использование влаги с высокой концентрацией железных солей приводит к обезвоживанию и сухости. Восстанавливают природный баланс при помощи кремов, бальзамов и масок.

Белый осадок в воде замедляет процесс приготовления еды. Высокая концентрация минеральных солей мешает как варке мяса, так и усвоению белков пищеварительной системой. Регулярная нагрузка желудка и кишечника приводит к нарушениям в работе организма.

Вред влаги с белым осадкомИсточник tribunecontentagency.com

Наличие белого осадка в воде одинаково вредно как человеку, так и домашним животным. При кормлении питомцев сухими рационами существует опасность возникновения мочекаменной болезни. Купание кошек и собак в жесткой жидкости приводит к выпадению шерсти.

Белый осадок в воде опасен для растений. Высокая концентрация нерастворимых солей изменяет минеральный состав грунта. При регулярном поливе на верхнем слое почвы и на корнях появляется светлый налет. Из-за твердого слоя подземные части плохо поглощают питательные вещества, что приводит к неравномерному развитию и гибели. 

Для бытовой техники

Жесткая жидкость с белым осадком уменьшает сроки эксплуатации электрических приборов. При нагревании воды на стенках образовывается накипь. Твердый кристаллический слой оседает на деталях устройств. Чтобы подогреть воду в чайнике, машинке или бойлере, техника тратит больше времени и энергии. Регулярная работа на предельной нагрузке приводит к быстрому выходу из строя.

Твердый налет на нагревательных деталяхИсточник mirnadivane.ru

Белый осадок в воде снижает способность моющих веществ пениться и отмывать грязь. Чтобы отстирать одежду или вымыть жирную посуду, человеку приходится больше использовать порошков, мыла или гелей. При увеличении объема быстрее расходуется бытовая химия. 

Налет на деталях стиральной машиныИсточник narodnij-servis.ru

Из-за жесткой воды с белым осадком на постиранной ткани появляется налет и светлые разводы. Высокая концентрация минеральных солей делает материал тусклым. Набивные рисунки становятся едва заметными, а оттенок полотна выцветает. Мелкие частицы забиваются между волокнами, поэтому одежда теряет эластичные свойства.

Присутствие белого осадка в воде провоцирует кристаллизацию на внутренних поверхностях труб. Из-за накипи сантехнические детали истончаются, что приводит к разрушениям и порывам. На отопительных приборах снижение давления ведет к уменьшению теплоотдачи и энергозатратам дома.

Конденсация пара

Обратный переход вещества из газообразного состояния в жидкое называют конденсацией. При конденсации часть молекул пара возвращается в жидкость.

Пар начинает превращаться в жидкость (конденсироваться) при определённом сочетании температуры и давления. Такое сочетание называется критической точкой. Максимальная температура, ниже которой начинается конденсация, называется критической температурой. При температуре выше критической газ никогда не превратится в жидкость.

В критической точке граница раздела фазовых состояний жидкость-пар размывается. Исчезает поверхностное натяжение жидкости, выравниваются плотности жидкости и её насыщенного пара.

При динамическом равновесии, когда число молекул, покидающих жидкость и возвращающихся в неё равно, процессы испарения и конденсации уравновешены.

При испарении воды её молекулы образуют водяной пар, который смешивается с воздухом или другим газом. Температура, при которой такой пар в воздухе становится насыщенным, начинает конденсироваться при охлаждении и превращается в капельки воды, называется точкой росы.

Когда в воздухе находится большое количество водяного пара, говорят, что его влажность повышена.

В природе испарение и конденсацию мы наблюдаем очень часто. Утренний туман, облака, дождь — всё это результат этих явлений. С земной поверхности при нагревании испаряется влага. Молекулы образовавшегося пара поднимаются вверх. Встречая на своём пути прохладные листики или травинки, пар конденсируется на них в виде капелек росы. Чуть выше, в приземных слоях, он становится туманом. А высоко в атмосфере при низкой температуре остывший пар превращается в облака, состоящие из капелек воды или кристалликов льда. Впоследствии из этих облаков на землю прольётся дождь или выпадет град.

Но капельки воды при конденсации образуются лишь в том случае, когда в воздухе находятся мельчайшие твёрдые или жидкие частицы, которые называют ядрами конденсации. Ими могут быть продукты горения, распыления, частицы пыли, морской соли над океаном, частицы, образовавшиеся в результате химических реакций в атмосфере и др.

«Испарение. Конденсация»

Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарение и  кипение.

Испарение

Испарение происходит с поверхности жидкости при любой температуре. Так, лужи высыхают и при 10 °С, и при 20 °С, и при 30 °С. Таким образом, испарением называется процесс превращения вещества из жидкого состояния в газообразное, происходящий с поверхности жидкости при любой температуре.

С точки зрения молекулярно-кинетической теории строения вещества испарение жидкости объясняется следующим образом. Молекулы жидкости, участвуя в непрерывном движении, имеют разные скорости. Наиболее быстрые молекулы, находящиеся на границе поверхности воды и воздуха и имеющие сравнительно большую энергию, преодолевают притяжение соседних молекул и покидают жидкость. Таким образом, над жидкостью образуется пар.

Поскольку из жидкости при испарении вылетают молекулы, обладающие большей внутренней энергией по сравнению с энергией молекул, остающихся в жидкости, то средняя скорость и средняя кинетическая энергия молекул жидкости уменьшаются и, следовательно, температура жидкости уменьшается.

Скорость испарения жидкости зависит от рода жидкости. Так, скорость испарения эфира больше, чем скорость испарения воды и растительного масла. Кроме того, скорость испарения зависит от движения воздуха над поверхностью жидкости. Доказательством может служить то, что бельё сохнет быстрее на ветру, чем в безветренном месте при тех же внешних условиях.

Скорость испарения зависит от температуры жидкости. Например, вода при температуре 30 °С испаряется быстрее, чем вода при 10 °С.

Хорошо известно, что вода, налитая в блюдце, испариться быстрее, чем вода такой же массы, налитая в стакан. Следовательно, скорость испарения зависит от площади поверхности жидкости.

Конденсация

Процесс превращения вещества из газообразного состояния в жидкое называется конденсацией.

Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, и в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы вернутся в неё.

Если сосуд открыт, то процесс испарения происходит быстрее, чем конденсация, и масса жидкости в сосуде уменьшается. Пар, образующийся над жидкостью, называется ненасыщенным.

Если жидкость находится в закрытом сосуде, то вначале число молекул, вылетающих из жидкости, будет больше, чем число молекул, возвращающихся в неё, но с течением времени плотность пара над жидкостью возрастет настолько, что число молекул, покидающих жидкость, станет равным числу молекул, возвращающихся в неё. В этом случае наступает динамическое равновесие жидкости с её паром.

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром.

Если сосуд с жидкостью, в котором находится насыщенный пар, нагреть, то вначале число молекул, вылетающих из жидкости, увеличится и будет больше, чем число молекул, возвращающихся в неё. С течением времени равновесие восстановится, но плотность пара над жидкостью и соответственно его давление увеличатся.

Конспект урока по физике в 8 классе «Испарение. Конденсация».

Следующая тема: «Кипение. Удельная теплота парообразования».

Чем перегрев опасен для рыб?

Есть ряд объяснений, как сильное нагревание воды может вредно сказаться на рыбках:

  1. Когда вода нагревается, то резко уменьшается кислород, и возрастает углекислый газ. Он опасен для дыхания. Также может начаться удушье, одышка, и отказ работы органов.
  2. При резком нагревании воды могут погибнуть полезные бактерии, которые содержатся в фильтрах очистки аквариума. Вода будет быстро загрязняться, что опасно для её обитателей.
  3. В воде, которая часто подвержена нагреванию, рыбки быстрее стареют и умирают.
  4. При росте температуры ускоряется разложение естественных отходов, повышение солёности воды. Это может привести к отравлению рыб.
  5. Аквариумные питомцы обитают в маленьком замкнутом пространстве. Для них изменения происходят слишком быстро, и они могут не выдержать. Любой стресс, даже незначительный, может привести к страданию или заболеванию.

Негативные воздействия холодной воды на организм человека.

Вода с температурой 12 градусов и ниже, как было установлено, вызывает периодическое (каждые 15–30 минут) расширение спазмированных сосудов кожи (феномен Льюиса). Это существенно снижает эффективность вазомоторной (сосудодвигательной) реакции, направленной на регуляцию теплообмена с окружающей средой. Интенсивное переохлаждение организма человека резко стимулирует обменные процессы.

Организм человека при этом быстрее, чем в обычных условиях воздушной среды, расходует легкоусвояемые энергетические субстраты – углеводы и свободные жирные кислоты. Гипергликемия (повышение количества сахара в крови), развивающаяся в результате стресса, в фазе компенсации по мере истощения энергетических ресурсов сменяется нарастающей гипогликемией (снижение концентрации глюкозы в крови).

Энергетические ресурсы практически не успевают израсходоваться лишь в случаях гибели от холодового шока. При остром охлаждении в воде наблюдаются быстрое развитие брадикардии (замедлениесердечной деятельности), а также нарушение ритма и глубины дыхания.

На фоне большого кислородного запроса организма, связанного с активизацией терморегуляторного метаболизма (обмен веществ в организме), эти изменения со стороны дыхательной и сердечно-сосудистой систем существенно снижают уровень оксигенации крови (насыщение кислородом артериальной крови) и тем самым ускоряют развитие гипоксии (снижение содержания кислорода в крови) в организме.

Внезапное действие холодной воды может вызвать расстройство внешнего дыхания (остановку дыхания, удушье) или сердечного ритма в результате обширного раздражения холодовых рецепторов кожи. Вызывая быстрое снижение температуры кожи, особенно конечностей, холодная вода обуславливает потерю тактильной (кожной) и болевой чувствительности, а также резкое снижение мышечной силы.

Исследования и опыт спасения экипажей погибших судов показали, что человек уже через 1–2 минуты нахождения в холодной воде не способен самостоятельно забраться наспасательную шлюпку или плот.

Для острого охлаждения в воде, которое протекает по типу стрессорной реакции на интенсивный раздражитель, характерны серьезные психические расстройства. Они резко снижают возможности организма в борьбе с холодом. При плавании у поверхности воды в наклонно-вертикальном положении угрожающее действие холода сказывается не только на сосудодвигательных центрах спинного мозга потерпевшего, но и непосредственно на его кровеносных сосудах.

В итоге это ведет к быстрому истощению функциональных возможностей сердечно-сосудистой системы. Поэтому гибель переохлажденных, находящихся в воде, наступает не от первичной остановки дыхания, как это бывает в нормальных условиях на суше, а от острой сердечной недостаточности (коллапса, остановки сердца), нередко возникающей на фоне гипогликемической комы (бессознательное состояние). Все перечисленное в значительной степени осложняет спасение человека.

Второе состояние воды — откуда взялась гипотеза

Впервые ученые предположили, что жидкая вода может иметь второе состояние около тридцати лет назад. Основой для нее послужило компьютерное моделирование. Тогда ученые рассчитали, что второе состояние жидкой воды возникает при температуре -70 градусов. При этом давление должно составлять тысячи атмосфер. Соответственно, жидкость обладает более высокой плотностью, так как молекулы расположены ближе друг к другу.

По этой причине два состояния воды в одной емкости будут образовывать слои и никогда не смешаются между собой. Примерно так же, как масло и вода — растворить одно в другом не получится, так как масло имеет меньшую плотность, в результате чего всплывает на поверхность воды и распределяется тонкой пленкой.

Учитывая условия, при которых появляется второе состояние воды, ученые длительное время не могли подтвердить гипотезу. Ведь при температуре -60 градусов вода, независимо от ее состояния, почти моментально затвердевает. То есть исследователи долгое время просто не успевали уловить другое состояние.

Во втором жидком состоянии вода смогла просуществовать не более трех микросекунд

Поразительные случаи спасения людей оказавшихся в ледяной воде.

Поразительные случаи спасения людей, волей судьбы оказавшихся в ледяной воде. 19 января 1965 года в юго-восточной части Берингова моря перевернулись от обледенения и затонули четыре советских траулера : «Севск», «Себеж», «Нахичевань», «Бокситогорск». Случилось это в 100 милях от острова Св. Матвея и 60 милях от острова Св. Павла.

Единственным, кому удалось спастись, был тралмастер А. Охрименко. Он продержался несколько часов в воде с температурой, близкой к точке замерзания, при 10- балльном шторме и морозе минус 21 градус. Данный случай является уникальным в истории катастроф на море.

В 1986 годулодка с 4 исландскими рыбаками внезапно перевернулась. При этом 3 из них удалось ухватиться за киль. Температура воды не превышала плюс 5 градусов. Продержавшись 45 минут, все они вынуждены были поплыть к берегу. Но через 10 минут 2 утонули. И только 3-му удалось преодолеть 5 км до спасительного берега за 5 часов. 23-летний рыбак был ростом 195 см, весил 125 кг и одет только в рубашку и джинсы. Врачи относят этот случай к феноменальным в медицинской практике.

Установлено, что устойчивость к гипотермии выше у людей с выраженным подкожно-жировым слоем и у спортсменов, тренированных к плаванию в холодной воде. Американские исследователи Пу и Эдхолм (1955) наглядно продемонстрировали это, предложив 2 пловцам, один из которых был непривычен к холодной воде, а другой – тренированный «морж», плавать в воде плюс 16 градусов «до отказа».

Первый был вынужден выйти на сушу через 30 минут. Его била дрожь, движения причиняли боль. Температура в прямой кишке снизилась до плюс 34,5 градуса. Второй испытуемый пробыл в воде 6 часов 40 минут. Чувствовал себя хорошо. Снижения температуры тела у него не отмечалось. Путем применения закаливающих процедур, регулярно выполняемых в течение длительного времени, можно достигнуть высокой степени устойчивости кхолодной воде.

Использование кипячения как метода

Как метод дезинфекции воды, кипячение ее при 100° C (212° F), является самым старым и наиболее эффективным способом, поскольку оно не влияет на вкус, эффективно, несмотря на наличие загрязнений или частиц, присутствующих в нем, и представляет собой одноступенчатый процесс, который устраняет большинство микробов. Рекомендуется только в качестве метода экстренной помощи или для получения питьевой воды в пустыне или в сельской местности, поскольку кипячение не может удалить химические токсины или примеси.

Кипячение также часто используется для удаления излишней соли из определенных продуктов, таких как бекон.

Как второе жидкое состояние воды удалось зафиксировать

Спустя 30 лет ученым-физикам наконец удалось доказать, что вода действительно может иметь, как минимум, два состояния. Результаты опытов опубликованы в журнале Science. Для эксперимента авторы использовали два фемтосекундных лазера. Один из них инфракрасный, который позволяет моментально нагревать лед и превращать его в воду. Второй, рентгеновский, использовался для зондирования образца, то есть позволял ученым отслеживать в каком состоянии находится вода в тот или иной момент времени.

В результате им удалось зафиксировать образование необычных пузырей, которые содержали воду во втором жидком состоянии. Правда, существовала она непродолжительное время — от 20 наносекунд до 3 микросекунд. Через несколько микросекунд вода переходила в твердое состояние. Но главное, что теория тридцатилетней давности была подтверждена.

Задачи на количество теплоты с решениями

Формулы, используемые на уроках «Задачи на количество теплоты,
удельную теплоемкость».

1 г = 0,001 кг;     1 т = 1000 кг;    1 кДж = 1000 Дж;    1 МДж = 1000000 Дж

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
 В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100 °С?

При решении задачи нужно учесть, что оба тела — и котёл, и вода — будут нагреваться вместе. Между ними происходит теплообмен. Их температуры можно считать одинаковыми, т. е. температура котла и воды изменяется на 100 °С — 10 °С = 90 °С. Но количества теплоты, полученные котлом и водой, не будут одинаковыми. Ведь их массы и удельные теплоёмкости различны.

Задача № 2.
 Смешали воду массой 0,8 кг, имеющую температуру 25 °С, и воду при температуре 100 °С массой 0,2 кг. Температуру полученной смеси измерили, и она оказалась равной 40 °С. Вычислите, какое количество теплоты отдала горячая вода при остывании и получила холодная вода при нагревании. Сравните эти количества теплоты.

Задача № 3.
 Стальная деталь массой 3 кг нагрелась от 25 до 45 °С. Какое количество теплоты было израсходовано?

Задача № 4.
 В сосуде содержится 3 л воды при температуре 20 °С. Сколько воды при температуре 45 °С надо добавить в сосуд, чтобы в нём установилась температура 30 °С? Необходимый свободный объём в сосуде имеется. Теплообменом с окружающей средой пренебречь

Задача № 5.
 На сколько градусов изменилась температура чугунной детали массой 12 кг, если при остывании она отдала 648000 Дж теплоты?

Задача № 6.
 По графику определите удельную теплоёмкость образца, если его масса 50 г.

Задача № 7.
 Для нагревания медного бруска массой 3 кг от 20 до 30 °С потребовалось 12000 Дж теплоты. Какова удельная теплоемкость меди?

Задача № 8.
 Нагретый камень массой 5 кг, охлаждаясь в воде на 1 °С, передает ей 2,1 кДж энергии. Чему равна удельная теплоемкость камня?

Задача № 9.
 Какое количество теплоты потребуется для нагревания на 1 °С воды объемом 0,5 л; олова массой 500 г; серебра объемом 2 см3; стали объемом 0,5 м3; латуни массой 0,2 т?

Задача № 10.
 Какое количество теплоты получили алюминиевая кастрюля массой 200 г и находящаяся в ней вода объемом 1,5 л при нагревании от 20 °С до кипения при температуре 100 °С?

Задача № 11.
 а) Воздух, заполняющий объем 0,5 л в цилиндре с легким поршнем, нагрели от 0 до 30 °С при постоянном атмосферном давлении. Какое количество теплоты получил воздух? б) В порожнем закрытом металлическом баке вместимостью 60 м3 под действием солнечного излучения воздух нагрелся от 0 до 20 °С. Как и на сколько изменилась внутренняя энергия воздуха в баке? (Удельная теплоемкость воздуха при постоянном объеме равна 720 Дж/кг-°С.)

Задача № 12.
  ОГЭ
 Металлический цилиндр массой m = 60 г нагрели в кипятке до температуры t = 100 °С и опустили в воду, масса которой mв = 300 г, а температура tв = 24 °С. Температура воды и цилиндра стала равной Θ = 27 °С. Найти удельную теплоёмкость металла, из которого изготовлен цилиндр. Удельная теплоёмкость воды св = 4200 Дж/(кг К).

Задача № 13.
 В теплоизолированном сосуде сначала смешивают три порции воды 100 г, 200 г и 300 г с начальными температурами 20 °C, 70 °C и 50 °C соответственно. После установления теплового равновесия в сосуд добавляют новую порцию воды массой 400 г при температуре 20 °C. Определите конечную температуру в сосуде. Ответ дайте в °C, округлив до целого числа. Теплоёмкостью калориметра пренебрегите.

Решение.

Ответ: 39 °С.

Задача № 14. (повышенной сложности)
 Стальной шарик радиусом 5 см, нагретый до температуры 500 ˚С, положили на лед, температура которого 0 ˚С. На какую глубину погрузится шарик в лед? (Считать, что шарик погрузился в лед полностью. Теплопроводностью шарика и нагреванием воды пренебречь.)

Дано: R = 0,05 м;   t1 = 500 ˚С;   t2 = 0 ˚С;
ρ1 (плотность стали) = 7800 кг/м3.;
ρ2 (плотность льда) = 900 кг/м3.
c (удельная теплоемкость стали) = 460 Дж/кг •˚С,
λ (удельная теплота плавления льда) = 3,3 • 105 Дж/кг,

Найти: h – ?

Конспект урока «Задачи на количество теплоты».

Посмотреть конспект урока по теме «Количество теплоты. Удельная теплоемкость»

Следующая тема: «ЗАДАЧИ на сгорание топлива с решениями».

Механизм кипения

Разобраться, сколько нужно градусов, чтобы вода закипела, поможет изучение механизма этого физического явления. Кипение представляет собой процесс преобразования жидкости в пар и проходит в несколько этапов:

  1. При нагревании жидкости из микротрещин в стенках сосуда выходят пузырьки с воздухом и водяным паром.
  2. Пузыри немного расширяются, но жидкость в сосуде настолько холодна, что это приводит к конденсации пара в пузырях.
  3. Пузырьки начинают лопаться до тех пор, пока вся толща жидкости не станет достаточно горячей.
  4. Через некоторое время происходит уравнивание давления воды и пара в пузырях. На этом этапе отдельные пузырьки могут подниматься на поверхность и выпускать пар.
  5. Пузырьки начинают интенсивно подниматься, начинается бурление с характерным звуком. Начиная с этого этапа, температура в сосуде не меняется.
  6. Процесс кипения будет продолжаться до тех пор, пока вся жидкость не перейдет в газообразное состояние.

Температура пара

Температура пара при кипении воды такая же, как и самой воды. Это значение не будет меняться до тех пор, пока не испарится вся жидкость в сосуде. В процессе кипения образуется влажный пар. Он насыщен жидкими частицами, равномерно распределенными по всему объему газа. Далее высокодисперсные частицы жидкости конденсируются, а насыщенный пар превращается в сухой.

Также существует перегретый пар, который намного горячее, чем кипяток. Но его можно получить только с помощью специальной аппаратуры.